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Abstract—Quantum entanglement is a cornerstone of quan-
tum mechanics and has profound implications for quantum
computing and cryptography. This article explores the the-
oretical underpinnings of quantum entanglement in photonic
systems, its application in quantum computing with qubits, and
its role in quantum cryptography. We present the mathematical
models and verification through simulations, including Bell test
experiments and Quantum Key Distribution (QKD) protocols.
The results shows the feasibility of photonic qubits in secure
communication and highlight future prospects for practical
applications.

I. INTRODUCTION

Quantum entanglement, a phenomenon where particles ex-
hibit correlated behaviors regardless of distance, has revolu-
tionized our understanding of quantum mechanics. Photonic
qubits, due to their robustness against decoherence and ease
of manipulation, serve as an ideal platform for implementing
quantum computing and cryptographic protocols [1]. This
paper delves into the theoretical background of quantum en-
tanglement, demonstrates key experiments using simulations,
and discusses the implications for future technologies [2].

II. MATHEMATICAL BACKGROUND

Quantum entanglement can be mathematically represented
through entangled states, such as Bell states. These states
form a basis for two-qubit systems and are crucial for
understanding quantum correlations [3].

A. Two-Qubit Systems and Bell States

In quantum mechanics, a qubit is the basic unit of quan-
tum information, analogous to a bit in classical information
theory. A single qubit can be in a superposition of the states
|0⟩ and |1⟩, which are typically represented as:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
A two-qubit system consists of two such qubits, and

its state can be represented in the combined basis
{|00⟩, |01⟩, |10⟩, |11⟩}. The state of a two-qubit system can
thus be written as:

|ψ⟩ = α|00⟩+ β|01⟩+ γ|10⟩+ δ|11⟩

where α, β, γ, δ are complex coefficients that satisfy the
normalization condition |α|2 + |β|2 + |γ|2 + |δ|2 = 1.

Bell states are a specific set of maximally entangled
quantum states of two qubits. They are named after physicist
John Bell, who formulated Bell’s theorem. The four Bell
states are:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩),

|Φ−⟩ = 1√
2
(|00⟩ − |11⟩),

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩),

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩).

(1)

These states form an orthonormal basis for the space of two
qubits and are used to demonstrate quantum entanglement.
Each Bell state represents a situation where the measurement
outcomes of the two qubits are perfectly correlated or anti-
correlated [7].

Entanglement is a quantum phenomenon where the quan-
tum states of two or more objects are interconnected, such
that the state of one object cannot be described independently
of the state of the other(s). This leads to correlations between
the measurement outcomes of entangled particles that are
stronger than those predicted by classical physics [4].

For instance, if we measure both qubits of the |Φ+⟩ state
along the same axis, we always find them in the same state
(both 0 or both 1), showing perfect correlation. Similarly,
in the |Ψ+⟩ state, measurements along the same axis will
always yield opposite outcomes (one 0 and one 1), showing
perfect anti-correlation [8].

B. Spontaneous Parametric Down-Conversion (SPDC)

SPDC is a nonlinear optical process in which a photon
(the pump photon) passing through a nonlinear crystal is
converted into two lower-energy photons (signal and idler
photons). This process is probabilistic and is widely used
to generate entangled photon pairs. The generated photon
pairs can exhibit quantum entanglement, making SPDC a
fundamental process in experimental quantum optics [6].

Mathematically, the state of the entangled photon pair
generated by SPDC can be written as:

|ψ⟩ = 1√
2
(|H⟩s|H⟩i + |V ⟩s|V ⟩i), (2)



where |H⟩ and |V ⟩ represent horizontal and vertical polar-
izations, respectively, and the subscripts s and i refer to the
signal and idler photons [4].

C. Quantum Key Distribution (QKD)

QKD is a secure communication method that uses quantum
mechanics to allow two parties to produce a shared random
secret key, which can then be used to encrypt and decrypt
messages. The security of QKD is based on the principles of
quantum mechanics, particularly the no-cloning theorem and
the detection of eavesdropping attempts [5], [9].

The BB84 protocol, developed by Charles Bennett and
Gilles Brassard in 1984, is one of the most well-known QKD
protocols. It involves the transmission of qubits in one of four
possible states, chosen at random. The key steps of the BB84
protocol are as follows: 1. Preparation: Alice randomly
prepares qubits in one of four states (e.g., horizontal, vertical,
diagonal, anti-diagonal). 2. Transmission: Alice sends the
qubits to Bob over a quantum channel. 3. Measurement: Bob
randomly chooses one of two bases to measure each qubit. 4.
Sifting: Alice and Bob publicly compare their basis choices
and keep only the results where their bases match. 5. Key
Distillation: Alice and Bob apply error correction and privacy
amplification to produce a shared secret key [4].

III. VERIFICATION BY SIMULATIONS AND EXPERIMENTS

A. Bell Test Experiment

The Bell test experiment verifies quantum entanglement by
comparing measurement results of entangled photons against
classical predictions. A violation of Bell’s inequality indicates
quantum correlations [2].

B. Explanation of Bell’s Inequality and Violation

Bell’s inequality provides a way to test the predictions of
quantum mechanics against those of classical physics. In a
classical, local hidden variable theory, the Bell parameter S
must satisfy the inequality S ≤ 2.

In the context of the Bell test, the Bell parameter S is
calculated using correlations between measurement outcomes
of entangled particles. For example, consider a scenario
where Alice and Bob each measure one of the entangled
particles in different bases (e.g., horizontal, vertical, diagonal,
anti-diagonal). The correlations between their measurement
outcomes are used to compute S.

Quantum mechanics predicts that for certain entangled
states and measurement settings, the value of S can exceed
2. Specifically, for maximally entangled Bell states and ap-
propriately chosen measurement bases, quantum mechanics
predicts that S can reach a value as high as 2

√
2 (approxi-

mately 2.828). This violation of Bell’s inequality (S > 2) is
a direct indication of quantum entanglement and cannot be
explained by any classical local hidden variable theory [7].

The key to observing a violation of Bell’s inequality
lies in the correct preparation of the entangled state, the
choice of measurement bases, and the accurate calculation
of correlations between measurement outcomes. When these
conditions are met, the experimentally measured value of

S will demonstrate the non-classical nature of quantum
entanglement [6].

C. Quantum Key Distribution (QKD) Simulation

QKD ensures secure communication by exploiting quan-
tum entanglement. The BB84 protocol, demonstrated through
simulations, illustrates how keys can be securely shared [9].

1) Results and Justification: The QKD simulation using
the BB84 protocol resulted in the generation of secure keys
for Alice and Bob. The keys were generated only where their
measurement bases matched. Sample keys generated were:

• Alice’s key: [1, 0, 1, 1, 0, ...]
• Bob’s key: [1, 0, 1, 1, 0, ...]

The matching keys indicate that the QKD protocol success-
fully established a secure communication channel, ensuring
that any eavesdropping attempt would be detectable. This
demonstrates the practical feasibility of using photonic qubits
for secure communication [8].

IV. CONCLUSION AND FUTURE PROSPECTS

Quantum entanglement in photonic systems offers a
robust foundation for quantum computing and cryp-
tography. The simulations utilize the theoretical models
and demonstrate the feasibility of practical applications,
such as secure communication through QKD. Future
research will focus on scaling these technologies for
widespread use, exploring advanced quantum algorithms,
and enhancing the robustness of quantum networks.
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