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Abstract—We present a numerical study of all semiconduc-
tor photonic crystal surface-emitting lasers with two types of
photonic crystals. We utilize time-domain simulations that are
performed using the three-dimensional coupled-wave theory. Our
evaluation includes examining carrier density, output power,
optical spectra, near- and far-field.

Photonic crystal (PC) surface-emitting lasers (SELs), see
Fig. 1(a), are devices engineered to achieve single-mode
operation and a narrow far-field emission pattern by utilizing
a photonic crystal structure [1]. Typically, these lasers explore
a two-dimensional (2D) PC layer with a-periodic air voids in
both lateral directions (r and y), where the lattice constant
a defines the edge length of the square unit cell of the
PC. The best to date high-power PCSELs [2] rely on the
PCs defined by a pair of elliptic features located along the
diagonal of the unit cell. It is expected that such devices
should enable continuous wave operation in a single-mode [3].
In this work, we present the design of an all-semiconductor
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Fig. 1. Cross-section of a PCSEL based on [8] (a), rectangular isosceles
triangle (RIT) feature (b), and stretched isosceles triangle (SIT) feature (c).

PCSEL featuring a PC layer composed of isosceles triangular
InGaP features embedded within a GaAs matrix, see Figs. 1(b)
and 1(c). Through dynamic simulations, we demonstrate that a
proper choice of triangles, following the proposal of [4], can
enable stable single-mode lasing in PCSELs with emission
areas exceeding several mm? [5].

We use the three-dimensional coupled-wave theory [6], [7]
to simulate the dynamical behavior of PCSELs within the
in-domain plain Q; = [0, L] x [0, L]. The complex field E
consists of four components, the slowly varying complex field
amplitudes propagating in +z- and +y-directions, stated as
E=[Ef E; E} E; ]T, respectively. According to [5], [7],
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the field equations are given as a system of four linear PDEs
with according boundary conditions
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Here, vg4, and Fgp, are the group velocity and the spontaneous
emission [8]. C is the complex [4 x 4] field coupling matrix
[6], [7], depending on the design of the PC and the verti-
cal structure of the PCSEL. The spatially-distributed relative
propagation factor A [5], [8] is given by

AB(N) = koAn(N) + £ [g(N) —a—=D] ()

with the central wave vector ko = 27/ )\, central wavelength
Ao = aner, and the effective refractive index negr. A, (V) de-
notes the refractive index change, g(IV) the carrier-dependent
logarithmic gain, « the total field loss, and D is a linear
operator modeling the Lorentzian-shaped gain dispersion. This
model does not account for dependencies on temperature.
Finally, the carrier density N(x,y,t) in the active region is
described by the diffusive carrier rate equation [7],

HN=V. (DyV1)N + L — R,,(N) =Ry (N,E),

Ry= 2+ BN?+CN? Ry xR[E*- (9(N)-D) E],

(3)
with V| = [8,,8,]", carrier diffusion Dy, injected current
distribution j(x,y), the elementary charge e, thickness of
the active zone d, spontaneous emission R, and stimulated
emission R,;. To perform time-dependent simulations, (1) and
(3) are discretized using finite differences. For more details,
see [5], [9].

In our simulations, we use a PCSEL with vertical structure
and parameters from [5], [8], a sketch is given in Fig. 1(a).
The PCSEL is of size L = 2.4mm with a circular contact
with diameter D = 1.6 mm. We explore the following features
of the PC: a rectangular isosceles triangle (RIT), as shown in
Fig. 1(b) and considered in [8] and [6], and a stretched isosce-
les triangle (SIT), as shown in Fig. 1(c) and first introduced
in [4]. During time integration, we use discretization steps
h = 9.6 um in space and At = h/v,, ~ 0.12ps in time.

The carrier density and the output power of the time-
dependent simulations are shown for both PCSELs in Fig. 2.
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Fig. 2. Carrier density and optical output power for the RIT-PCSEL on the left
and the SIT-PCSEL on the right side. The oscillation is part of the switching-
on behavior of the laser; after about 1.5 ns, the stabilization of the transients
is reached. Top-right corner insets represent the corresponding PC features.

In the case of RIT, see the left part of Fig. 2, the carrier
density shows never-vanishing fluctuations, determined by the
interaction of multiple modes. In comparison, for the SIT in
the right part of Fig. 2, the carrier density and the output
power reached by a single fundamental mode converge to a
steady state in approximately 1.5ns. The optical spectra and
far-field for both structures are presented in Fig. 3. For the
RIT-PC-based PCSEL case, the far-field shows several side
lobes in addition to the main peak in the center, while the
far-field of the SIT-PCSEL consists of a single spot in the
center. This is also visible in the optical spectra. In the case
of the RIT-PCSEL, the shift is AX ~ 1.5nm, and a peak
broadened by multiple contributing modes can be observed.
This aligns with the multimodal behavior already described
for the carrier density. For the SIT-PCSEL, one main peak
exists, slightly above AX = 0. The time-averaged near-
field distributions for both PCSELs are depicted in Fig. 4.
The RIT-PCSEL shows the emission pattern corresponding
to the contact shape, exhibiting multiple small-scale inten-
sity fluctuations. In contrast, the SIT-PCSEL shows a much
smoother profile with decreasing intensity to the sides. The
degradation from a perfectly circular beam profile is the result
of a phase mismatch between counterpropagating fundamental
mode components.

In conclusion, we have performed time-domain simulations
using a 3D-TW model for all semiconductor PCSELSs featuring
two types of PC. We demonstrated the difference in the time-
dependent behavior of both structures. It was shown that the
choice of PC features has a crucial impact on the type of
operation. Our preliminary simulations show that employing
SIT-type PC features can facilitate single-mode lasing in
PCSELs with contact areas extending to 10 mm? and beyond.
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3. Optical spectra and far-field on the top side of the PCSEL for the

RIT-PCSEL on the left and the SIT-PCSEL on the right side.
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Fig. 4. Time-averaged near-field on the bottom side of the PCSEL for a

RIT-PCSEL on the left and a SIT-PCSEL on the right side.
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