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Abstract—We review the application of the AAA algorithm
for rational approximation of the optical response function in
photonic devices. Originally developed to efficiently interpolate
sampled response data, the AAA algorithm also enables the
accurate and stable computation of resonances, e.g., quasinormal
modes (QNMs), along with their corresponding field distribu-
tions. Our approach applies to general nonlinear eigenproblems
and can handle branch cuts without introducing spurious or
artificial modes. It can further be applied to analyze VCSEL
systems and photonic waveguides.

Index Terms—Photonic modes, rational approximation, AAA
algorithm, quasinormal modes (QNM), nonlinear eigenvalue
problems, resonance analysis, optical response, VCSEL.

I. PROBLEM SETUP

We consider time-harmonic light scattering problems as
described by the second-order Maxwell’s equation

∇× µ−1∇×E− ω2ϵE = iωJ, (1)

where E(r, ω) ∈ C3 is the scattered electric field and ω ∈ C
is the angular frequency. The source is modeled as an electric
current density J(r) ∈ C3. The material properties are in-
tegrated into the model through the permittivity ϵ(r, ω) and
permeability µ(r, ω) tensors, and r ∈ R3 is the position.
Light scattering problems with an extended illumination such
as a plane wave can be transformed in the above form (1).
Furthermore, Maxwell’s equation (1) is supplemented with
a radiation condition, realized by perfectly matched layers
(PMLs), and/or periodic boundary conditions which may also
depend nonlinearly on ω.

In this work, we review the recently introduced approaches
from Refs. [1]–[4] based on the AAA algorithm [5]. To
analyze or to optimize the optical system, a measurable
quantity of interest f(ω) (response function) is extracted from
the electromagnetic field such as far-field amplitudes, Purcell
factors, coupling coefficients, etc. As our framework relies
on the meromorphic nature of the response f(ω), special
care is needed for quadratic quantities to circumvent complex
conjugation; see [6]. From the perspective of this work, the
numerical solver for Maxwell’s equation (1) is a complete
black box. We want to characterize the system only from

the knowledge of the response function f(ω) at discrete
sampling points (ωk, fk) [5]. The efficiency of the algorithm
corresponds to the number of required sampling points to reach
a desired accuracy.

This is in contrast to a traditional QNM computation [7],
[8] with an eigensolver such as Arpack [9]. An algebraic
eigensolver relies on the application of the system matrices
together with their sparse inversion and needs adaptions to
cope with the nonlinearity of the material tensors or the
boundary conditions [10]. The advantage of our approach is
that the excitation source as well as the relevant quantity of
interest are included in the analysis step, so that the framework
is considered as physically driven. We can prioritize the
computed modes by their impact on the quantity of interest
and how strongly they are excited by the given source. In this
way, an intrinsic mode selectivity allows to easily filter out
non-physical modes which may be caused by the truncation
of the PML system.

II. AAA RATIONAL APPROXIMATION

The Adaptive Antoulas–Anderson (AAA) algorithm [5]
gives an approximation of a scalar-valued function f(ω) by
a rational function r(ω) in a barycentric representation. A
number M of freely selectable sampling points ωk ∈ Z ⊆ C
and corresponding function values fk = f(ωk) are the input
for the algorithm. The algorithm greedily adds sampling points
ω̂j to a subset Ẑ ⊂ Z, together with the corresponding
function values f̂j until reaching the demanded accuracy.
Then, each iteration within the algorithm leads to a rational
approximation r(z) of order m− 1,

r(ω) =
n(ω)

d(ω)
=

m∑
j=1

ŵj f̂j
ω − ω̂j

/
m∑
j=1

ŵj

ω − ω̂j
, (2)

where the weights ŵj minimize the error∑
ωk∈Z\Ẑ

|fk d(ωk)− n(ωk)|2. (3)



The barycentric representation of the r(ω) forms the foun-
dation of the AAA algorithm and enables the efficient com-
putation of the rational approximation. It has removable sin-
gularities at ẑj ∈ Ẑ and the limit limz→ẑj r(z) = f̂j exists.
Therefore, the approximation r(z) interpolates the function
values f̂j . The zeros of n(z) and d(z) are the zeros and poles
of r(z), respectively. They are provided as the eigenvalues of
generalized eigenproblems. The residues of the approximative
response function r(ω) are considered as the modal contribu-
tions of the corresponding poles.

III. APPLICATIONS

Characterization of chiral metaurfaces, sensitivity analysis

In [1], we characterized a chiral metasurface by its modal
contributions. As a surplus of the AAA algorithm, the sensi-
tivities on the geometrical parameters can be easily computed
just from derivative data of the response function. Further-
more, the AAA algorithm is exploited to directly solve the
eigenproblems, i.e., we show how to superimpose the field
values at the sampling points to form an approximation of the
QNM field, which is scaled according to its excitation by the
chosen source.

Finding relevant VCSEL resonance modes

This example is taken from [2], where we applied the Riesz
contour integral method [11] to compute the fundamental
mode of a vertical-cavity surface-emitting laser (VCSEL).
We fare much better with the new AAA based approach.
The following table gives the convergence of the fundamen-
tal mode eigenvalue with the number of sampling points
that were equidistantly chosen within the wavelength interval
[986nm, 976nm].

#n ℜ(λ)[nm] ℑ(λ)[nm] rel. err
2 9.8107e+02 0.0000e+00 1.48e-03
3 9.7919e+02 2.9976e+00 2.89e-03
5 9.7936e+02 1.5045e+00 1.36e-03
9 9.7965e+02 1.9669e-01 2.46e-05

17 9.7963e+02 2.0128e-01 5.99e-07
33 9.7963e+02 2.0121e-01 2.29e-08
65 9.7963e+02 2.0120e-01 1.29e-08
81 9.7963e+02 2.0122e-01 4.49e-09

TABLE I: Convergence of the fundamental mode eigenvalue with the
number of equidistant sampling points on the real axis. Five sampling
points are needed to observe convergence. The saturation from 33
sample points onwards is due to the numerical condition of the FEM
system.

Dealing with branch cuts

In [3], we applied the AAA algorithm to a periodic scatter-
ing problem where the response function exhibits branch cuts
due to vanishing diffraction orders. When sampling along the
real frequency axis, these branch cuts manifest as clusters of
poles, complicating the analysis. This issue can be resolved
using a complex coordinate transformation that maps the
frequency plane onto a Riemann surface without branch cuts.

This transformation reveals resonance modes that would oth-
erwise be obscured, thereby clarifying the underlying physical
mechanisms.

Waveguide analysis

For waveguide problems, the optical response is preferable
considered as dependent on the propagation constant kz . Our
framework also applies to that case; see [4]. For many practical
applications involving photonic cyrstal fibers, the fundamental
mode is embedded in a cluster of cladding modes which
renders eigenvalue computations costly and requires to filter
out the relevant mode. Here, our framework allows to choose
a source term located in the core region of the fiber which
only weakly excites the cladding modes.
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