
 

Realization of high-speed 3D waveguide analysis model 

via transfer learning based on 2D-FDTD simulation 
 

Gai Ichisawa 
Institute of Science Tokyo, Japan  

ichisawa.g.b63a@m.isct.ac.jp 

Sho Okada 
National Institute of Information and 

Communications Technology, Japan  

okada.s.ah@nict.go.jp 

Tomohiro Amemiya 
Institute of Science Tokyo, Japan   

amemiya.t.e262@m.isct.ac.jp 

 

Abstract—In this study, we realized an optical device 
analysis program that achieves results equivalent to those of 3D-
FDTD with a small amount of computation time and 
computational resources using transfer learning, and actually 
applied it to a 1x2 MMI coupler to discuss its usefulness. The 
proposed model has an R2 score of 0.901 and an analysis time of 
about 47.4 µs per calculation, which is sufficiently fast compared 
to the 3D-FDTD. 
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I. INTRODUCTION 

Optical circuit technology, including silicon photonics, is 
becoming indispensable for future optoelectronic 
convergence because it enables high-speed, large-capacity, 
and low-power data transmission. In this context, the finite 
difference time domain (FDTD) method is becoming more 
important for designing various devices in optical circuits. 
However, a bottleneck in the optimal design of devices using 
3D-FDTD is that it requires a large amount of time for analysis 
(or a large amount of computational resources), even for 
simple structures. 

Against this background, in this study, we realized an 
optical device analysis program that achieves results 
equivalent to those of 3D-FDTD with a small amount of 
computation time and computational resources using transfer 
learning, and actually applied it to a 1x2 MMI coupler to 
discuss its usefulness. 

II. METHODS OF REALIZING ANALYSIS PROGRAM 

When realizing an optical device analysis program that uses 
deep learning to obtain results equivalent to those of 3D-
FDTD, it is necessary to collect a large amount of training data 
using 3D-FDTD for the target optical device in advance. 
However, it is clear that this is not realistic in terms of 
computation time and computational resources. 

Therefore, in this study, we introduced a method in which 
a neural network is roughly trained using a large amount of 
analysis data with 2D-FDTD, which has a low computational 
load, and then the network is optimized by transfer learning 
using a small amount of analysis data with 3D-FDTD.  This 
method is versatile regardless of the type of optical device, and 
in this study, its effectiveness was verified by creating an 
analysis program for a 1x2 multi-mode interferometer (MMI) 
coupler. 

III. DATA PREPARATION 

As mentioned above, a deep neural network (DNN) 
analytical model for a 1x2 MMI coupler was created in this 
study. As shown in Fig. 1, four structural parameters were set 
as input variables: length L, width W, and output port positions 
Po1 and Po2 (-1 for the end of the device, 0 for center, and 1 for 
the other end of the device), and the output variable was the 
light intensity from each port. 

In this study, we generated 10000 sets of 2D-FDTD data 
and 400 sets of 3D-FDTD data using Synopsys RSoft Photonic 
Device Tools while randomly varying the input variables to 
stay within ±3σ according to the normal distribution in Table 
1 (including moderate amounts of structural parameters for 
devices with high output intensity). 

IV. NETWORK DESIGN FOR 2D-FDTD 

First, a neural network was trained to predict the intensity 
of the two output ports of a 1x2 MMI coupler using 1000 sets 
of 2D-FDTD data. For training, we used 5-fold cross-
validation, with the average of the maximum R2 scores as the 
evaluation index for the network. Models that were 
determined to be overlearning by looking at the loss function 
were excluded from the evaluation.  

Fig. 1 Structure of MMI applying the proposed 

analysis method using transfer learning. 

Table 1 Structural parameter distribution settings 

Parameter Average Standard 

deviation 

Range 

𝐿 15.5 µ𝑚 4.00 µ𝑚 ሾ3.50,27.5ሿ µ𝑚 

𝑊 3.00 µ𝑚 0.33 µ𝑚 ሾ2.00,4.00ሿ µ𝑚 

𝑃𝑜1, 𝑃𝑜2 0 0.33 ሾ−1.0,1.0ሿ 

 

Fig. 2 Network configuration trained with analyzed 

data from 2D-FDTD.  



The optimized network and score transition are shown in 
Figs. 2 and 3. The optimized DNN was fully connected with 
16, 32, 16, and 8 nodes in the hidden layer, where the R2 score 
was 0.936 

V. NETWORK DESIGN FOR 3D-FDTD 

 Next, based on the network trained with the analysis data 
from the 2D-FDTD, the network was optimized by transfer 
learning [1-3] using a small amount of analysis data from the 
3D-FDTD. The final DNN analysis model for the 1x2 MMI 
coupler is shown in Fig. 4. First, the four structural parameters 
are input to the DNN trained in section IV (Fig. 2) to obtain 
two feature values. Next, these two feature values and the 
original four inputs are combined to form a 6-dimensional 
vector. This vector is input to a small network (2 layers, 8 
nodes per layer) to finally obtain the light intensity from each 
port. After training the small network, the R2 score was 0.901, 
as shown in Fig. 5. 

VI. DNN PERFORMANCE 

A plot of the actual 3D-FDTD analysis results and the DNN 
prediction results obtained in section V is shown in Fig. 6. 105 

runs of DNN predictions were performed, and all calculations 
were completed in 4.74 s, for an average analysis time of 47.4 
µs per run. It can be concluded that by using transfer learning, 
analysis results equivalent to 3D-FDTD could be obtained 
with less computation time and computational resources. 

This method is considered to be versatile because it can be 
used not only for MMI but also for other optical devices. 
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Fig. 3 Score transition of NN shown in Fig. 2. 

Fig. 4 Transfer learning network configuration 

trained with analyzed data from 3D-FDTD. 

Fig. 5 Score transition of NN shown in Fig. 4. 

 

Fig. ６  A plot of the actual 3D-FDTD analysis 

results and the DNN prediction results obtained in 
Section V. (a) Output port 1. (b) Output port 2. 

 a  

 b  

Table 2 Average calculation time for each method 

Method Software Processor Time 

3D-FDTD Synopsys RSoft 
Photonic Device 

Tools 

Intel Xeon Gold 
6238R 

3 h 

DNN Python (PyTorch) NVIDIA GeForce 
RTX 3070 

47.4 µs 

 


