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Abstract—This work investigates instabilities that can occur
during pulse propagation along optical fibers. They can have
physical origin, as the modulation instability, or being just
numerical artefacts. We analyze in particular the numerical
stability of operator splitting methods applied to Generalized
Nonlinear Schrödinger Equations.
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I. INTRODUCTION

The propagation of optical pulses along nonlinear and
dispersive optical fibers is often described by the general-
ized nonlinear Schrödinger equation (GNLSE) [1], which we
present in the following form

i∂zψ + D̂ψ + γ|ψ|2ψ = 0. (1)

The GNLSE is suited to describe the evolution of stable pulses
such as solitons, but also the modulation instability (MI) which
is a fundamental physical physical phenomenon in the field
of nonlinear waves [2]. MI occurs when small spontaneous
modulations of initially uniform carrier wave begin to grow,
leading to the emergence of various localized structures, such
as robust solitary pulses [3] or spontaneous rogue waves [4].

Dispersive effects on wave propagation are governed in the
GNLSE by the linear dispersion operator D̂ =

∑J
j=2

βj

j! (i∂τ )
j

and are separated from nonlinear effects, which are governed
by the last term in Eq. (1). According to this separation, split-
step methods provide an efficient approach for the numerical
solution of the GNLSE, because they allow to separating com-
plex problems into simpler, more manageable parts. In fact, in
the context of optics, split-step methods are routinely used to
study the propagation of pulses in optical networks [5], [6].
However, such methods are explicit and can lead to numerical
instabilities, which we investigate. Results previously obtained
for multiplicative splitting methods are extended to additive
splittings [7]. An estimate of the largest possible integration
step is derived and tested. The results are important when
many solutions of GNLSE are needed, e.g., in optimization
problems or statistical calculations.

We split the GNLSE into linear (A) and nonlinear (B) parts:

∂zψ = (B +A)ψ ⇒ ψ(z + h) = eh(B+A)ψ(z). (2)

The above formal solution can be replaced by its splitting

Ψ(z+h) = ehBehAΨ(z); eh(B+A) = ehBehA+O(h2). (3)

Ψ(z) approximates ψ(z) when the integration step h→ 0. The
exponential eh(B+A) in Eq. (2) is understood as the propagator.

A. Multiplicative Methods

A multiplicative splitting M of order p with s stages, which
involves 2s a1≤n≤s and b1≤n≤s, is defined by

eh(B+A) = M(h) +O(hp+1) (4)

with M(h) = ebshBeashA · · · eb1hBea1hA. The splitting co-
efficients are selected so that the formal Taylor expansions of
M(h) and eh(B+A) coincide as prescribed. The simplest are
the Lie–Trotter splitting with s = p = 1 and the classical
Strang splitting with s = p = 2 [8]. Another famous example
with s = p = 4 is the Suzuki–Yoshida splitting [9], [10].
Equation (4) can be transformed to the equivalent form [10]

eh(B+A)+∆(h) = ebshBeashA · · · eb1hBea1hA (5)

The leading term in the local error ∆(h) = O(hp+1) consists
of commutators of length p+1. All commutators with shorter
lengths must cancel each other, which gives a system of
algebraic equations for the splitting coefficients. When a basis
set in the space of commutators is chosen, the local error can
be characterized by the ℓ2 norm of the leading term in ∆(h),

∥∆(h)∥ = κ
hp+1

(p+ 1)!
+O(hp+2), κ = const. (6)

The numerical value of κ is used to compare splittings of the
same order to each other, and the final choice of a1≤n≤s and
b1≤n≤s is made in favor of the minimal κ.

B. Additive Methods

Additive splitting offers computational advantages, particu-
larly for parallel architectures. If we use multiple splittings
of the form (4) and then combine their predictions with
appropriate weights, we obtain an additive splitting scheme.

Each multiplicative component of an additive splitting will
be referred to as a thread, implying that different threads can
be calculated independently on a multi-core machine before



taking their weighted sum to accomplish an integration step.
The simplest additive splitting is the second Strang splitting [8]

eh(B+A) =
1

2

(
ehBehA + ehAehB

)
+O(h3). (7)

Another example is the splitting with four threads and p = 3
derived by Burstein and Mirin [11]. As a third example, we
follow the ARBBC splitting [12] with four threads and p = 4,
which has a 10 times smaller local error parameter κ = 0.36,
compared to the Suzuki–Yoshida splitting. Both the accuracy
and efficiency of the ARBBC splitting have been studied previ-
ously [12]. Moreover, Ref. [12] contains a detailed comparison
between the aforementioned additive schemes and commonly
used multiplicative schemes. However, to the best of our
knowledge, little is known about the stability conditions for
the additive splittings.

C. Stability Analysis

Both multiplicative and additive splitting methods are ex-
plicit schemes, and while they are easy to implement and
very fast [13], they can suffer from numerical instabilities.
An extension of earlier results on stability to the fourth-
order Suzuki–Yoshida splitting was reported in [14], and to an
arbitrary multiplicative splitting in [15], again in the GNLSE
framework. The extension for the mentioned additive splitting
methods are reported in [7]. To assess stability we have derived
a root condition in [7], requiring eigenvalues of the numerical
propagation matrix M to lie within the unit circle. This
condition is sketched in Fig. 1, and it provides the stability
domains. For GNLSE this gives the stability criterion for the
stepsize h [16]:

h ≤ π

maxΩ |M(Ω)|
.

Here, M(Ω) is the even part of the dispersion function D(Ω).
As an example, have tested the correctness of splitting

methods with respect to MI. In result, the second Strang
splitting [8] fails regardless of step size h. The Burstein and
Mirin splitting [11] requires, roughly speaking, a two times
smaller integration step than the multiplicative splittings, but
can capture the MI. The additive splitting proposed in Ref. [12]
can be used with the same integration step as the multiplicative
splittings. At least, the stability criterion should be an integral
part of any implementation of splitting solvers for GNLSE.
This is especially important when the dispersion function and,
therefore, the differential operator in GNLSE are approximated
by higher-order polynomials. The ARBBC splitting performs
comparably to multiplicative schemes even at large h, but is
both more accurate and less restrictive.

II. CONCLUSIONS

We have studied restrictions on the numerical integration
step h that provide a numerically stable split-step solution
of the GNLSE (1). The root condition provides a practical
stability check and helps to avoid numerical artifacts. The
technique has been applied to the mentioned additive split-
tings, which are of interest because different threads of such
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Fig. 1. Stability domain for the propagation matrix M. If the point
(detM, TrM) is inside the triangle, the eigenvalues of M are inside the
unit circle. This is the root condition. From [7].

splitting schemes can be computed independently on a multi-
core machine, and ARBBC is the most reliable scheme.
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