
1D vectorial simulations of anisotropic VCSELs
1st Valerio Torrelli

Politecnico di Torino, CNR-IEIIT
Torino, Italy

valerio.torrelli@polito.it

2nd Martino D’Alessandro
Politecnico di Torino, CNR-IEIIT

Torino, Italy
martino.dalessandro@polito.it

3rd Pierluigi Debernardi
CNR-IEIIT

Torino, Italy
pierluigi.debernardi@cnr.it

Abstract—Recent work has shown that elliptically and circu-
larly polarized vertical-cavity surface-emitting lasers (VCSELs)
can be realized by leveraging the interaction between tilted
anisotropic layers. To harness this effect for the design of custom-
polarized emitters, we present a mathematical framework that
enables fast and efficient one-dimensional vectorial simulations
of anisotropic VCSELs.

Index Terms—VCSELs, polarization, optical anisotropies

I. INTRODUCTION

Optical anisotropies play a key role in determining the po-
larization of vertical-cavity surface-emitting lasers (VCSELs),
whether they arise from electro- and elasto-optic effects [1],
[2] or subwavelength gratings (SWG) [3]. Anisotropies cause
dichroism and birefringence, and, when tilted to each other,
the supported VCSEL polarizations become elliptical due to
a resonator chirality [3], [4]. In this work, we develop a
mathematical framework to analyze the polarization of single-
mode anisotropic VCSELs, enabling the emission of any
custom polarization state.

II. THEORY AND RESULTS

Consider a single-mode VCSEL composed of a stack of
anisotropic layers as depicted in Fig. 1. Focusing on a one-
dimensional analysis, transverse variations along the (x, y)
plane can be neglected, allowing us to focus solely on the
longitudinal stack along z. This corresponds to an electric
field phasor E without a z-component. According to [5],
E can be expanded in terms of the modes {eµ} supported
by a uniform medium with a real scalar dielectric constant
ϵref (and refractive index r), where µ represents a multi-
dimensional label. In this case, µ = [i, α]T, where i ∈ {x, y}
represents the linear polarization either along x or y, while
α ∈ {forward (f), backward (b)} indicates the propagation
direction. We define eµ = e0 (x̂δix + ŷδiy), where δij is the
Kröneker delta and e0 is arbitrary. Two polarization modes are
labeled by µ = [i, α] and ν = [i′, α′], and must be normalized
so that: ∫

R2
eµ · eν dxdy =

Z⊥Cµ

2sµ
δii′ , (1)

where Cµ is the modal power normalization constant, sµ =
±1 according to α and Z⊥ = Z0/r, Z0 being the vacuum
impedance. The field phasor within the VCSEL can be written
as E(z) =

∑
µ aµ(z)eµ, shifting the unknown to the 4 z-

dependent expansion coefficients {aµ}.
Each VCSEL layer is described by its thickness t and by

its anisotropic dielectric constants ϵXX and ϵY Y along their
principal axes (X,Y ), which can be tilted to our reference
system (x, y) by an angle ϕ (top inset of Fig. 1). It is
convenient to define the isotropic and anisotropic dielectric

Fig. 1. VCSEL schematic and needed parameters for each layer.

constants ϵiso and ϵani as (ϵXX ± ϵY Y )/2, respectively. An
isotropic refractive index can be associated to the anisotropic
layer as niso =

√
ϵiso/ϵ0, ϵ0 being the vacuum dielectric

constant.
Expressing {aµ} as the vector a = [axf, axb, ayf, ayb]

T, the
transmission matrix of one of the VCSEL layers embedded in
the reference medium can be obtained solving the coupled
mode equations as T = exp [(B+K) t] [5], B and K
representing the propagation and coupling matrices. B is
diagonal with B11 = B13 = −jβ⊥, B22 = B44 = jβ⊥,
where j is the imaginary unit, β⊥ = 2πr/λ and λ is the
optical wavelength. On the other hand,

K =
jω(ϵiso − ϵref)Z⊥

2

−1 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 1 1

+ (2)

+
jωϵaniZ⊥

2

− cos(2ϕ) − cos(2ϕ) − sin(2ϕ) − sin(2ϕ)
cos(2ϕ) cos(2ϕ) sin(2ϕ) sin(2ϕ)
− sin(2ϕ) − sin(2ϕ) cos(2ϕ) cos(2ϕ)
sin(2ϕ) sin(2ϕ) − cos(2ϕ) − cos(2ϕ)

 ,

where ω is the optical pulsation. It is useful to define the
matrix A as the first matrix that appears in (2).

According to the sketch in Fig. 1, defining Ti,t and the Tk,b
as the transmission matrices of the i-th and k-th layers of the
top and bottom stacks, respectively, the transmission matrix of
the whole stacks can be obtained as Tt = TNtTNt−1·. . .·T1 =∏1

i=Nt
Ti,t and Tb =

∏1
k=Nb

Tk,b, where Nt and Nb are the
number of layers of the top and bottom stacks.

Let us now treat the active layer, considered isotropic, with
thickness ta and a nominal dielectric constant ϵa. To support



Fig. 2. Structures under investigation. On top of a standard VCSEL epi-
structure, we consider 2 (a) or 5 (b) additional SWGs, separated by spacers.

optical modes, its dielectric constant must be modified by a
quantity ∆ϵa, whose real part must be zero for cold cavity
modes and whose imaginary part is linked to the modal
threshold gain and represents an unknown of our problem. The
coupling matrix of the active layer can be written as Ka =
Ka,0 + (∆ϵa/ϵref)∆Ka, where Ka,0 = jω (ϵa − ϵref)Z⊥A/2
and ∆Ka = jωϵrefZ⊥A/2. Since |∆ϵa| << ϵa, for thin
active layers it is possible to linearize the active transmission
matrix as Ta = Ta,0 + (∆ϵa/ϵref)Ta,0∆Kata, where Ta,0 is
the transmission matrix of the active layer without any index
modification. Using this expression of Ta, the transmission
matrix for the whole VCSEL can be written as:

T = TbTaTt = T(1) + (∆ϵa/ϵref)T
(2). (3)

Finally, splitting the vector a ∈ C4 into its forward and
backward components af and ab ∈ C2, accounting for the
fact that within the interval (0, L) all layers are embedded in
the reference medium and evaluating the reflection coefficients
from the reference medium to the boundary semi-infinite
media at z = 0 (Γtop) and z = L (Γbottom), we end up with
the following relationships: af(L

−) = Tffaf(0
+)+Tfbab(0

+),
ab(L

−) = Tbfaf(0
+) +Tbbab(0

+), af(0
+) = Γtopab(0

+) and
ab(L

−) = Γbottomaf(L
−). Solving for ab(0

+) and splitting all
the components of the transmission matrices according to (3),
we end up with the following 2 × 2 generalized eigenvalue
problem:

γN(1)ab(0+) = N(2)ab(0
+), (4)

where γ = −ϵref/∆ϵa and N(1,2) = T
(1,2)
bf Γtop + T

(1,2)
bb −

ΓbottomT
(1,2)
ff Γtop − ΓbottomT

(1,2)
fb . By determining the wave-

lengths for which ℜ{γ} = 0, one finds the emission wave-
length λe of the two supported modes. At λe, ℑ{γ} can
be used to evaluate the corresponding modal threshold gain
gth. The corresponding two eigenvectors ab(0

+), defined up
to a multiplicative constant, represent the near-field (NF)
exiting the device since ab(0

−) ∝ ab(0
+), i.e., aNF =

[0, axb(0
+), 0, ayb(0

+)]T ∈ C4. The latter can be transmitted
from 0− to 0+ using the transmission coefficient from the
top semi-infinite medium to the reference medium, then it
can be propagated using the transmission matrices up to
any section z of the VCSEL. This allows the evaluation of
the standing wave as SW(z) = |Ex(z)|2 + |Ey(z)|2, where
Ex(z) = axf(z) + axb(z) (similarly for Ey), and the Stokes
parameters according to [6].
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Fig. 3. Refractive index (niso), emission wavelength, threshold gain, SW and
Stokes parameters of the lasing mode supported by structures (a) and (b).

This model is applied to the structures in Fig. 2, optimized
for the emission of circularly polarized light. In structure (a),
on top of an 850 nm VCSEL structure, we consider two SWGs
of thicknesses tg,in = 60 nm and tg,out = 41 nm, tilted by
45° and separated by a spacer of thickness ts = 87 nm. In
structure (b), 5 gratings and 4 spacers are considered with
parameters ts = 32 nm, tg,in = tg,out = 80 nm, tg = 80 nm.
All gratings from the second on are tilted to the first one with
an angle increasing in steps of ∆ϕ = 3.8°. All gratings are
treated as homogeneous anisotropic media using the Born-
Wolf formulae with a 50% filling factor [6]. Fig. 3 reports λe,
gth, the SW and the Stokes parameters of the lasing mode of
both structures, showcasing how this model can be used for
polarization engineering in any section of the VCSEL.
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