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Abstract—This paper deals with modeling of incoherent and
partialy coherent effects in structures with lateral periodicity
based on scattering matrix formalism. The recurrent formulas are
applied in matrix form to describe structures consisting of general
anisotropic materials. Incoherent wave summation is presented in
the form of infinite geometric series and generalized Mueller ma-
trix calculus descibing complete polarimetric response including
depolarization phenomena. This method can be combined with
any of the existing coherent methods of modeling periodic struc-
tures and it offers significantly faster computational performance
than partially coherent/incoherent methods based on averaging.
The general approach is demonstrated on phenomena emerging
from the complex interaction between diffraction grating and
thick substrate and the models are compared with experimental
spectroscopic data.

Index Terms—periodic structure, incoherent summation, Rig-
orous Coupled Wave Analysis, Mueller matrix.

I. INTRODUCTION

Majority of widely applied rigorous methods for precise
modeling of electromagnetic fields in periodic structures,
like Rigorous Coupled-Wave Analysis (RCWA) [1], Finite-
Difference Time-Domain method (FDTD) [2], Finite Element
Method (FEM) [3], Plane-Wave Admittance Method (PWAM)
[4] are based only on illumination by coherent light. In such
coherent models interference phenomena occur for arbitrary
long optical path difference. This approach is sufficient for
many applications, but is not enough in specific areas, as the
presence of incoherent or partialy coherent light can suppress
or attenuate interference oscillations and drastically change the
properties of investigated systems.

In spectroscopic or ellipsometric experimental measure-
ments and many cases of practical interest, the incoherency
can have multiple origins: the presence of thick transparent
substrate, as the thickness of substrate usually exceeds the
coherence length of the light source; by inhomogenity in the
thickness of the measured sample over the beam spot; span
of incident angles; or the finite spectral bandwidth of the
monochromator.

In this paper, we introduce a new method based on Mueller
matrix formalism for modeling of incoherent effects in systems
containing periodic structures consiting of materials with arbi-
trary anisotropy. The proposed method combines the scattering
matrix (S-matrix) approach, as a way of describing the optical
response of a coherent system, with a Partial Wave Summation

Method [5], [7] and Mueller matrix formalism widely used in
optical community [6]. As our approach is a matrix method
based on Mueller matrix formalism, also depolarization of
light by the structure is described and no statistical averaging
is needed, which increases the numerical efficiency of the
algorithm especially for complex structures. The method also
enable deeper understanding and physical insight of a complex
wave propagation in periodic systems.

II. MATRIX DESCRIPTION OF POLARIZED LIGHT

Coherent propagation can be effectively described using the
2 × 2 amplitude-based Jones polarization matrix R, which
consists of the aplitude reflection coefficiets rss, rsp, rps,
and rpp. The lower indexes correspond to incident and ref-
elected polarizations. To describe incoherent effects properly
and to avoid spurious interferences, intensity based statistical
quantities like Mueller matrices, instead of amplitudes need
to be summed. The 4 × 4 intensity-based Mueller matrices
describing the interaction with the sample can be obtained
from the amplitude based Jones matrices by the following
transformatios R = A (R⊗R∗)A−1, where ⊗ denotes the
Kronecker product and A is a lienar transformation matrix [5].

The presence of the grating periodicity Λ introduces diffrac-
tion behavior. The effective propagation constant of the n-th
mode in one-dimensional case takes the form:

Ny,n = Ny,0 + n
λ

Λ
, (1)

where Ny,0 describes incident wave, λ denotes the light
wavelength.

III. INCOHERENT PARTIAL WAVE SUMMATION

Fig. 1. Partial wave summation in system with lateral periodicity



The incident light upon hitting the first interface is partially
reflected and partially transmitted, as seen in Fig. 1. The
transmitted waves then propagate through the thick layer,
where they can be absorbed, but the phase information is lost.
At the second interface the waves are again partially reflected
and transmitted. This interaction can be described in the form
of matrix sum and leads to a convergent infinite series with
finite sum known as Airy summation. This approach leads
to partial summation formulas for reflection and transmission
Mueller matrices of a thick layer [5], [7]:

T = T (1)P
(
I − R̃(0)P̃ R(1)P

)−1

T (0), (2)

R = R(0) + T̃ (0)P̃ R(1)P
(
I − R̃(0)P̃ R(1)P

)−1

T (0),(3)

where I is the identity matrix and P is the propagation matrix.
Such a simple procedure can be generalized for layers

with lateral periodicity and the size of matrices increases
significantly according to ([4(2N + 1)]2 × [4(2N + 1)]2)
and, the interactions between various diffraction orders need
to be accounted properly (for implementation details see
Supplement of Ref. [7]).

For partial coherent case, the interference effects are
suprressed partialy and the Mueller matrix is expressed in the
form

T = T (12)P (E − Q)
−1

{
[E − γ(τ) (E⊗Q∗)]

−1
+

[E − γ(τ) (Q⊗E)]
−1 − E

}
T (01), (4)

where Q = R̃(10) P̃ R(12) P , Q = R̃(10) P̃R(12) P and E
is the 4 × 4 identity matrix and E is the 2 × 2 identity
matrix. Here γ(τ) is the degree of mutual coherence for
quasimonochromatic light of Lorentz spectral shape. Note that
for γ = 0 and γ = 1 the formula (4) is reduced to (2) and
to coherent case T = T(12)P (E−Q)

−1
T(01). respectively.

Reflection matrix R can be obtained in similar form.

IV. GENERALIZATION TO SYSTEMS WITH LATERAL
PERIODICITY

To verify applicability of our approach to structures of prac-
tical interest, the models were compared with experimental
measurements on flexible diffractive components. The sample
consisted of a 530 nm thick lamellar grating with the period
of 1350 nm printed in a 80 µm thick polymer substrate. The
s- and p- reflectance and transmittance of the zero and first
diffraction orders were measured in wavelength range from
350 to 1700 nm on the Cary 7000 Spectrophotometer with
Universal Measurement Accessory.

The data shows interesting effect of increased reflection
with two peaks around 1250 and 1500 nm originating from
the interaction of grating with the substrate, that can not be
explained by models with infinite substrate.
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Fig. 2. Comparison of measured and modelled data. a) s- and p-specular
reflectance for the incidence angle φ = 6◦. b) s- reflectance for different
incidence angles.

Fig. 3. Comparison of measured and modelled data. a) s- and p-reflectance
of first-order diffracted wave for normal incidence. b) s- and p-transmittance
of first-order diffracted wave.
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