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Description of many-body light-matter interactions in the
regime of strong-light matter coupling is usually presented
within the framework of the seminal work of Hopfield, where
the concept of polariton was introduced [1]. However, this
description has several drawbacks that limit its applicability.
The picture of several well-defined modes of light and matter
modes interacting with each other is correct as long as the
shapes of eigenmodes are not substantially modified by the
interaction. Plane-wave description of polariton modes is far
from reality in confined systems, while dissipative effects can
lead to substantial corrections. This may lead to incompat-
ibility of theoretical descriptions and physical realizations.
To date, there is no systematic way to determine a quantum
model in the form of a master equation, for a given physical
nanostructure, that would take into account all its physical
features.

We present a systematic method for obtaining precise form
of quantum master equation from first principles, under the as-
sumption of small size of emitters (such as excitons) compared
to the wavelength of light, which are strongly coupled to light
in a dielectric structure. The method is based on Bogoliubov
transformation [2], [3] in the conservative case and on the
concept of third quantization [4] in the dissipative case. The
procedure involves finding eigenmodes of Maxwell equations
coupled to macroscopic polarization field in the classical
limit, which can be performed by any solver of choice.
We propose that this method can be used for engineering
many-body nonlocal interactions between polariton modes in
carefully designed structures. In one example, we design a
semiconductor structure characterized by high nonlocality of
interactions which leads to substantial quantum correlations
between modes of emitted light (see Fig. 1). The polariton
non-Hermitian eigenmodes are conveniently obtained using
the extended Photonic Lasers Simulation Kit (PLaSK), which
allows to treat the light-matter coupling in the strong coupling
regime.

We demonstrate how the strong interactions resulting from

Fig. 1. (a) An example of an engineered semiconductor structure hosting
exciton-polariton modes with nonlocal interactions. (b) Electric field intensity
in the symmetric eigenmode. (c) second-order correlation function of emitted
light in function of detuning. (d) cross-correlation showing enhancement of
cross-mode correlations due to nonlocal interactions.

exciton and photon confinement in polaritonic nanostructures
can be used to realize a photonic quantum neural network. The
concept relies on the idea of quantum reservoir computing [5],
which is a special type of recurrent quantum neural network
where recurrent node connections do not have to be tuned in
the training phase. The training consists of modifications of the
output layer connections, which has several important compu-
tational advantages. We show how polariton networks can be
used in this configuration to realize tasks on quantum inputs,
such as quantum feature detection, quantum tomography, and
quantum state generation.
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