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Abstract—We compare some classical and machine-learning 
enhanced design optimization methodologies. We investigate the 
design of the complex structures of ten-junction InP lattice-
matched photonic power converters with In0.53Ga0.47As 
absorbers optimized for operation at 1550 nm with 53.6% ± 
1.3% conversion efficiency. We find that the implicit pattern 
recognition capabilities of dimensionality reduction using 
principal component analysis accelerates design discovery, 
optimization, and the understanding of complex optical 
phenomena in the simulated devices.  
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I. INTRODUCTION 
Free-space and fiber-based optical links with photonic 

power converter (PPC) receiver elements offer the potential 
for fast, flexible, high-fidelity data and power transmission. 
We target novel high-efficiency (≥50%) and high output 
voltage (≥5 V) 10-junction PPCs using InGaAs absorbers 
lattice-matched to InP for operation in the 1550 nm 
telecommunications C-band. The design landscape of these 
devices is high-dimensional and highly correlated. We 
leverage the pattern recognition capabilities of dimensionality 
reduction and machine learning algorithms, alongside 
classical optimization, to efficiently explore the design space 
of our PPCs. The wider survey that the machine-learning 
enhanced methods allow empowers a more informed design 
choice, where growth considerations and other criteria help 
select from the multiple high-performance designs that may 

exist. We calibrate our device model with fabricated devices. 
We study the role of luminescent coupling in device 
performance. And, we investigate the potential for our 
machine learning enhanced methodology to expand the design 
perspective and supplement understanding of the design space 
for on-substrate multi-junction PPCs and those employing flat 
back-reflectors [1-4]. 

II. RESULTS AND DISCUSSION 
We designed and grew lattice matched 1-junction 

photovoltaic (PV) samples by metalorganic vapor phase 
epitaxy on p-InP substrates at Fraunhofer ISE.  For testing 
purposes thin absorbers of different thickness were grown and 
fabricated: 60, 180, and 540 nm. The absorber layer is 
sandwiched between higher bandgap front surface field (FSF) 
and back surface field (BSF) layers. We developed an 
optoelectronic model to simulate the PV devices using a drift-
diffusion model in Synopsys Sentaurus TCAD software. Our 
1-dimensional model treats the devices as laterally infinite 
layered structures.  

The root-mean-square difference between measured & 
simulated EQE is within 1%, which supports our method of 
extracting the extinction coefficient for InGaAs. These 1-
junction devices converted 1540 nm laser light with 
2.66 W/cm2 input power into electrical power at 2%, 5%, and 
14% efficiency, for the 60 nm, 180 nm, and 540 nm devices, 
respectively. Using optimization techniques, we predict a 
maximum efficiency of 46% for an absorber layer thickness 
of 4380 nm and input power of 2.56 W/cm2. We fabricated 2- 
& 10-junction devices, which consist of InGaAs cells 



connected in series with transparent tunnel diodes. We 
measured fabricated 10-junction InGaAs photonic power 
under 1.52 µm laser illumination at room temperature and 
observed a maximum efficiency of 46.4±1.6% with an output 
power density of 16 W/cm2, a voltage output at maximum 
power of 5.01 V, and an open circuit voltage of 5.78 V. We 
will show fitting results of our model to these multi-junction 
devices, which include a detailed model of luminescent 
coupling between subcells & 10-junction optimization results. 

We quantify the impact of luminescent coupling on device 
performance by calculating the coupling between each 
emission and absorption event using a transfer matrix 
method. For a test 2-junction structure, up to 85% of the 
emission events in the InGaAs absorber layers are re-
absorbed within the device. This number increases to 96% 
when a planar back-reflector is included due to improved 
light management. 

To further improve device efficiency using back reflectors, 
we have developed a computational framework employing 
Python and standard libraries to explore optoelectronic 
device design using machine learning.  For our analysis, we 
apply principal component analysis as a dimensionality 
reduction technique. Dimensionality reduction enhanced 
optimization uses an optical model based on rigorous coupled 
wave analysis to produce current-matched subcells. Full 
efficiencies are determined by coupling to a drift-diffusion 
solver, with luminescent coupling. Fig. 1 illustrates the 
principal computational steps.  

We find that for on-substrate 10-junction PPC devices, the 
absorber thicknesses converge to a unique optimum, which 
varies slightly (≤5%) but systematically from Beer-Lambert 
expectations.  For 10-junction devices with a flat Au back-
reflector, the design space is richer, with a continuous 
subspace of similar performance optima with total absorber 
thicknesses varying by up to 25%.  The optimization figure of 
merit (FOM) is defined as 

𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 [#𝑒𝑒]
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 [#𝛾𝛾]

 (1) 

The optical generation current in number of electrons is 
divided by one-tenth of the input power, in number of photons, 

as it is shared over the 10 subcells or segments of the device. 
The maximum value is 1. Optimized results display 
photocurrent FOM above 0.9925. 
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Fig. 1. Top: Results presented are generated using unsupervised machine learning with principal component analysis. Simplified schematic of the modeled 
on-substrate photonic power converter devices.  Bottom: Simplified design flow for the machine learning enhanced design optimization. Step 1; classical 

multi-start optimization. Step 2; top designs from step 1 according to a chosen figure of merit (FOM) are used to train a dimensionality reduction algorithm 
and generate a reduced dimension subspace. Step 3; the reduced dimensional subspace is used to generate start points. Step 4; extension of the method, 

classical multi-start optimization from the step 3 grid points to mitigate information loss during steps 2 and 3. 
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