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Abstract—Selected aspects of the mathematical modelling and
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I. INTRODUCTION

The semiconductor laser is a fascinating object for a theo-
retical physicist. Mathematical modeling of such a device must
incorporate several physical disciplines, including the transport
of charged carriers and heat, as well as the generation, guid-
ance and propagation of photons. The physics involved extends
to both the macroscopic and microscopic levels. Examples
include the classical drift-diffusion and wave equations, and
the quantum-theoretical based calculation of mobilities and
the dielectric susceptibility. Quantum laser theory is required
to calculate noise spectra. Another aspect to consider is the
range of spatial and temporal scales involved, which vary
from nanometers to millimeters and picoseconds to continu-
ous wave. It is nearly impossible to include all disciplines,
levels, and scales in a single simulation program. Instead,
the entire problem must be broken down into smaller parts.
The results can be transferred from one part to another using
determined parameters, analytical functions, or look-up tables.
Further simplifications are often necessary because numeri-
cal implementations must be compatible with the computer
resources available when writing the code, such as memory
and processing. However, when making such simplifications,
it is important to start from first principles and observe basic
physical principles.

The three modeling issues I will discuss in my talk are as
follows: (i) local charge neutrality; (ii) filamentation; and (iii)
orthogonality of cavity modes.

(i) The van Roosbroeck system describes the semi-classical
transport of free electrons and holes in a quasi-static electric
field using a drift-diffusion approximation [1]. It consists of
the Poisson equation for the electric potential and continuity
equations for the electron and hole current densities which
are driven by the gradients of the quasi-Fermi potentials. The
electron and hole densities are related to the electric potential
as well as the quasi-Fermi potentials of electrons and holes
via so-called state equations [2]. The numerical solution of
this highly non-linear system of differential equations is non-
trivial [3] and different numerical schemes have been proposed
[4]. However, since the Debye length λD =

√
ε0εskBT/q2n

is much smaller than the thicknesses of the bulk layers of
diode lasers driven above threshold, the solution of the Poisson
equation can be avoided by applying the zero-space charge
approximation and setting the right-hand side of the Poisson
equation to zero [5],

n(ξ)− p(ξ)− C = 0 (1)

with

n = NcF1/2 (ξ) and p = NvF1/2

(
φF − Eg

kBT
− ξ

)
(2)

where F1/2(·) is an Fermi integral and C = N+
D −N−

A is the
ionized net doping. The solution of the neutrality condition (1)
yields the relation between the electron and hole densities n
and p, respectively, and the Fermi voltage φF which depends
on the energy gap Eg, but not on the conduction and valence
band edges separately. In my talk I will compare the results
of a full numerical solution of the drift-diffusion system and
with a solution based on (1) [6].

(ii) For many years, the multi-peaked lateral field profiles of
BA lasers have been often interpreted in terms of filamentation.
As first demonstrated by Bespalov and Talanov [7], plane
waves propagating in a uniform medium with a focusing Kerr
nonlinearity spontaneously break up into small filaments. In
diode lasers an indirect Kerr-type nonlinearity can be induced
by the dependence of the real part of the susceptibility on
the carrier density (often described by Henry’s α−factor)
which in turn depends on the field intensity via the rate
of stimulated recombination. There are several reasons why
this indirect Kerr-type nonlinearity does not result in the
development of filaments. First, the susceptibility in the active
region of a laser is complex-valued. In regions with a high
intensity the real part of the susceptibility (refractive index)
is increased, but the imaginary part (gain) is decreased. This
results in both focusing and defocusing phenomena at the same
time. Secondly, the medium of an injection laser is always
nonuniform because of the formation of a lateral waveguide
due to the dependence of the susceptibility on carrier density,
local temperature, or on external factors such as etched index-
guiding trenches or implanted regions. Third, the excitation
of several lateral waveguide modes with different wavelengths
leads to mode beating that drives oscillations of the carrier
density via the stimulated recombination. Thus, BA lasers
exhibit an inherently non-stationary behavior, see Fig. 1. I



will show in my talk that the lateral field profile can be
surprisingly well understood as the result of the competition
and superposition of stationary lateral waveguide modes [8],
[9], [10], [11].

Fig. 1. Near field intensity of a BA laser measured with a streak camera
(courtesy of H. Christopher).

(iii) The forward and backward propagating longitudinal
modes Φ±

m of a laser cavity fulfill a special orthogonality
relationship due to the openness of the cavity and the presence
of gain,

(Φµ,Φν) :=

∫ L

0

[
Φ+

µΦ
−
ν +Φ−

µΦ
+
ν

]
dz = 0 for µ ̸= ν,

(3)
which can be also considered as a consequence of time-
reversal symmetry. A similar relation holds also for the
transverse modes. The relation (3) has two consequences.
Firstly, it is evident that the integral does not define a scalar
product, as the Φs are complex-valued. Indeed, it has been
demonstrated that (Φµ,Φν) = 0 can occur even for µ = ν at
specific parameter configurations, which is the consequence
of a mode degeneracy [12], [13]. The occurrence of such
exceptional points is not restricted to lasers but is inherent to
non-Hermitian systems [14]. Secondly, the relation (3) results
in an enhancement of the intrinsic spectral linewidth compared
to the case of power-orthogonal modes. This enhancement
is often described in terms of the Petermann factor. In my
talk I will demonstrate the occurrence of exceptional points
in two-section DFB lasers and I will address the origin of
the Petermann factor in the context of calculating the intrinsic
spectral linewidth in terms of the cavity mode [15].
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