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Abstract—We discuss a self-consistent simulation approach for
the dynamic modeling of quantum cascade lasers (QCLs). These
feature a quantum-engineered active region, enabling unique
functionalities such as frequency comb generation in the mid-
infrared and terahertz range. The model combines a density
matrix description of the active region with electromagnetic
modeling of the microwave and optical propagation in the
laser waveguide. Based on simulations of experimental QCL
structures, we demonstrate the accuracy and numerical efficiency
of the model. Due to its versatility, the approach can be adapted
to different waveguide configurations and also to other quantum
optoelectronic devices.

Index Terms—Quantum cascade lasers, laser mode locking,
microwave photonics

I. INTRODUCTION

Quantum-engineered optoelectronic devices feature a nanos-
tructured active region, offering unprecedented possibilities.
The most prominent examples are the quantum dot, interband
cascade and quantum cascade laser (QCL). The latter is a
unipolar device, utilizing transitions between quantized states
in the conduction band of a multi-quantum-well structure.
In this way, the lasing wavelength becomes independent of
the material band gap and can be custom-tailored over a
wide range of the mid-infrared and terahertz region. Fur-
thermore, the quantum active region exhibits unique dynamic
gain properties and strong nonlinear effects such as four-wave
mixing. These features can be exploited for the realization of
compact, electrically pumped short-pulse and frequency comb
sources at wavelengths hardly accessible to conventional diode
lasers [1], [2]. More specifically, mode-locking techniques
are utilized to generate periodic waveforms, including short-
pulse trains and optical fields featuring broadband comb-
like spectra. These laser sources open up a wide range of
applications in fields such as sensing, metrology, imaging and
communications. Recently, also more exotic optical waveforms
have been realized, such as soliton crystals and other harmonic
states featuring multiple optical waveform periods within a
single roundtrip [3], [4].

Besides the quantum active region, also the optical waveg-
uide plays an important role for dynamic operation, for ex-
ample in the context of dispersion compensation [1]. Fur-
thermore, adequately designed waveguides simultaneously act
as microwave transmission lines, enabling propagation of
microwave modulations in the pump bias along with the

optical waveform. Recent research has started exploiting this
design degree of freedom for the implementation of novel
functionalities. For active mode-locking where waveform gen-
eration is triggered by external bias modulation, the optical and
microwave co-propagation increases the modulation efficiency
and has for example enabled the realization of quantum walk
combs in QCLs, which are especially flat and broadband [5].
On the other hand, in free-running QCLs the optical dynamics
leads to a modulation of the current along the waveguide,
which has been exploited for photonics-based millimeter wave
generation and can perspectively also be utilized for the self-
stabilization of frequency combs [6], [7].

A targeted development of waveform-generating QCLs re-
quires dynamic simulation models combining accuracy and
versatility with numerical efficiency. In this context, semi-
classical approaches employing a density matrix model for
the quantum active region and a description of the optical
waveguide field based on Maxwell’s or related equations have
proven particularly useful [8]. To incorporate above discussed
microwave effects, the waveguide model has recently been
adequately extended [9]. In the following, we describe the
model and discuss simulation results of an experimental struc-
ture for photonics-based millimeter wave generation. Notably,
by using a generalized multilevel Hamiltonian rather than the
two-level model employed in Maxwell-Bloch equations, the
electron dynamics in the active region due to light-matter
and potentially also microwave-matter interaction can be self-
consistently described.

II. MODEL

Our simulation approach combines a multi-level density
matrix model of the quantum active region with optical and
microwave propagation equations for the waveguide. The
active region is at any spatial grid point modeled by a
representative quantum system with the density operator ρ̂.
The time evolution is governed by a Lindblad-type equation

iℏ∂tρ̂ =
[
Ĥ0 − d̂E, ρ̂

]
+ D̂ (ρ̂) , (1)

with the Hamiltonian Ĥ0, optical dipole operator d̂, and
dissipator D̂ (ρ̂). For numerical efficiency, we introduce the
widely used rotating-wave approximation. To this end, we



write the optical field in terms of its forward and backward
propagating envelopes E± (x, t) as

E = ℜ
{[
E+ exp (iβx) + E− exp (−iβx)

]
exp (−iωct)

}
,
(2)

with the propagation constant β and center frequency ωc, and
discard the rapidly oscillating terms arising in (1). To further
reduce the numerical effort, we assume that the waveguide
geometry allows reduction of the model to a single spatial co-
ordinate x along the optical propagation direction [8]. Within
this framework, the optical propagation in the waveguide can
be modeled by [8]

∂tE
± = ∓vg∂xE

± + f± − vgaE
±/2− ivgβ2∂

2
tE

±/2, (3)

with the power loss coefficient a, group velocity vg and group
velocity dispersion coefficient β2. The polarization contribu-
tion of the quantum system f±(x, t) is computed from (1).
By adding the transmission line equations

∂xu = −L′∂ti−R′i ,

∂xi = −C ′∂tu− Jw (4)

to the model, microwave propagation along the waveguide
can be described in terms of the voltage u(x, t) and current
i(x, t). Here, the microwave properties of the waveguide are
characterized via the distributed inductance L′, capacitance C ′

and resistance R′. For realistic simulation results, especially
the frequency dependence of R′ must be accounted for in the
numerical scheme [9]. The current density J (x, t) through the
quantum active region of width w is again computed from (1).
On the other hand, Ĥ0, d̂ and D̂ in (1) generally depend on
u obtained from (4). A coupled simulation of (1), (3) and
(4) provides a closed model for the quantum, optical and
microwave dynamics in the device.

III. SIMULATION RESULTS

We apply above simulation approach to an experimental
QCL structure for photonics-based millimeter wave generation
[6]. The Hamiltonian, optical dipole moments and dissipation
rates in (1) are extracted from carrier transport simulations
[10]. Furthermore, the optical waveguide parameters are ob-
tained from literature, and the microwave model is taken from
[9]. The setup is simulated over 10,000 roundtrips to ensure
convergence. The results depend on the exact choice of trans-
mission line parameters, demonstrating the influence of the
waveguide microwave characteristics on the overall dynamic
QCL operation. In Fig. 1, the simulated instantaneous intensity
and bias at the right facet are displayed for an exemplary
waveguide, along with the associated power spectral densities.
Overall, the results show good agreement with experimental
data [6].

In conclusion, the presented simulation approach enables
the targeted design of QCL devices for the generation of
optical waveforms and microwave fields. Furthermore, since
the model employs a multi-level density matrix description
of the active region, it is quite versatile and may be adapted
to other quantum optoelectronic devices, such as interband
cascade and quantum dot lasers.
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Fig. 1. (a) Outcoupled optical intensity and AC bias field at the right facet. (b)
Power spectral density of the microwave signal. (c) Optical power spectrum.
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