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Abstract—Semiconductor lasers present several challenges 

in terms of both design and understanding. Their numerous 

epitaxial layers, material properties, and physical structures 

generate a complex and high-dimensional space of parameters 

that must be optimized. We develop and demonstrate the use of 

a computational model capable of exploring this high-

dimensional space. We validate this model against 

experimentally obtained data to ensure high-quality inputs are 

generated for use in future machine learning analyses.   
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I. INTRODUCTION 

Semiconductor lasers have become ubiquitous in today’s 
technological and scientific industries. Diode lasers are key 
components in telecommunication, power-beaming, and 
sensors [1], [2], [3]. The wide-range of applications creates a 
high number of possible designs to select from,  presenting a 
challenge for laser designers who must not only select the 
appropriate design parameters for the application but must 
then optimize the design to maximise the relevant 
performance metrics. 

Techniques for optimization of various types of lasers 
have included genetic algorithms, binary search, simulated 
annealing, and Bayesian methods [4], [5], [6]. These 
techniques are useful for  finding optimal conditions for 
device design or best fits in large parameter spaces. While 
these methods are valuable for model validation and 
extracting physical parameters they may not be the most 
efficient choice for developing novel designs or providing a 
physical understanding of device performance (i.e. 
“knowledge discovery”). Other methods employing machine 
learning (ML) techniques, such as neural networks [7], have 
been suggested. In particular, dimensionality reduction 
methods such as principal component analysis (PCA) [8], [9], 
can significantly reduce the complexity and computational 
cost of laser design studies by reducing the dimensionality of 
the problem and offering interpretability.  

Nonetheless, in order to facilitate the use of ML  
techniques, it is important to ensure that training data is based 
on a validated device model in order to produce physically 
meaningful results. Therefore, optimization techniques to fit 
data to experiment still play an important role. We present a 

model of a Fabry-Perot (FP) buried heterostructure (BH) laser 
that is calibrated to experimental results. The model will be 
used as a foundation for future ML applications.   

II. METHODS 

A. Experimental 

We perform measurements of LIVs, spectrum, and net 
optical gain on FP-BH lasers. The devices are grown on InP 
substrates. The active region consists of four multi-quantum 
well layers composed of compressively strained InGaAlAs.  
The lasers have cavity lengths of 2 mm. 

The lasers are mounted on a temperature-controlled stage 
and the net optical gain is measured at temperatures of 20 °C, 
35 °C, and 50 °C. The gain is measured just below the 
threshold current (Ith) of the laser at 17 mA, 22 mA, and 29 
mA for each respective temperature. These measured curves 
are shown in Fig. 1. The method follows that of Ref. [10].  

B. Modelling and Numerical Optimization 

We combine commercially available laser simulation 
packages with Python tools to simulate and study the BH 
lasers. The measurements described in Section II.A are used 
to validate the model. The commercially available software 
packages are Photon Design’s Harold and PICWave. In 
Harold we generate the material gain (Gmat) of the  BH laser  
modeled as a 1-dimensional epitaxial stack. This is followed 

 
Fig. 1. Experimental Gnet curves for an FP-BH laser with four quantum 
well layers. Measurements are performed on a temperature controlled 

stage at 20 °C, 35 °C, and 50 °C. Measurements are performed just 

below the Ith of the laser. 

 



by simulations in PICWave which returns the modal gain 
(Gmod), confinement factor (Γ), modal loss (α) and calculates 
the LIV curve. The net gain and LIV curves are extracted and 
compared with the experimental data.  

These two standalone software packages are tied together 
to provide uninterrupted flow of the simulations using Python, 
facilitating data extraction in order to fit the data and validate 
the model.  

We select five material properties as fitting parameters: the 
scattering loss of the laser cavity, the electron and hole net 
recombination lifetimes, the intraband lifetime, and the 
bandgap narrowing factor in the QW regions. A differential 
evolution algorithm [11] is used to narrow down the initial 
parameter space. The best solution is further refined using a 
Nelder-Mead algorithm. The residual is the root sum of 
squares of Ith and the differential efficiency (ηd). 

III. RESULTS AND DISCUSSION 

We report the final values of the fitting parameters for the 
scattering loss of the laser cavity, the electron and hole net 
recombination lifetimes, the intraband lifetime, and the QW 
bandgap narrowing factor as 8.6 cm-1, 9.4e-12 s, 4.1e-13 s, 
7.9e-14 s, and -1.3e-9 respectively. The results of this best fit 
to the 2 mm cavity BH laser with four quantum well layers 
operating at 20 °C are shown in Figure 2. The fitting was 
performed against the root sum of squares of the ηd and Ith. 
Experimentally we observe an Ith of 16.852 mA and a ηd of 
0.116 W/A under continuous wave operation. The optimizer 
returns a result of 16.859 mA and 0.115 W/A for these 
parameters respectively. We note that there is good agreement 
between the experimentally extracted cavity mode loss 14.03 
cm-1  and the mode loss generated by the simulations 15.02 
cm-1. The net gain also shows good agreement between 

experiment and simulation with respect to the gain peak. This 
gives further weight to our model validity since neither the 
modal loss nor the gain were considered in the residual 
calculations but were instead extracted as a result of the fitted 
simulations. Further agreement between the modal loss and 
the gain could be obtained by defining a figure of merit that 
includes these elements. 

The validated material parameters provide confidence in 
the simulation outcomes of these FP-BH lasers and will be 
used as a foundation for future machine learning techniques in 
combination with the process flow we have detailed here.   

IV. CONCLUSIONS 

 We present a validated model of an FP-BH laser  grown 
on InP substrates with four InGaAlAs quantum well layers. 
The simulation process flow combines multiple software 
packages (Photon Design’s Harold and PICWave) as well as 
in-house techniques implemented through Python to extract 
simulation results and parameters to accurately fit the 
experimental data. A differential evolution algorithm is used 
to assess five different material parameters. The solution is 
refined with a Nelder-Mead algorithm. We achieve a robust 
fit to the data, ensuring high quality inputs are available for 
further study using machine learning analyses. 
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Fig. 2. The (a) simulated and experimental LIV and (b) Gnet for a 2 
mm cavity FP-BH laser. Both experimental gain measurements and 

simulated results were performed with a substrate temperature of 20 

°C and a drive current of 17 mA. 


