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Abstract—Bragg gratings are an essential component of semi-
conductor lasers. One of the most precise methods to calculate
an optical response of such a component is the 3D FDTD
method. However, due to its computational effort, it is usually not
used for the simulation of large structures. Here, we investigate
the performance of 2D and 3D Finite-Difference Time-Domain
(FDTD) methods for Bragg grating simulations. We demonstrate,
that the 2D FDTD method can be used for grating structures
of interest, while the 3D FDTD can only be used for short
structures up to 500 µm. We show that the 2D simulation results
can be utilized to set up an efficient 3D FDTD simulation. We
demonstrate that the combination of the 3D FDTD method and
the coupled mode theory provides an efficient way of predicting
the reflectance of longer Bragg gratings.

Index Terms—Surface Bragg gratings, FDTD simulations,
couple-mode theory.

I. INTRODUCTION

State-of-the-art concepts for the realization of semicon-
ductor lasers include long (up to 2 mm) distributed Bragg-
reflectors [1], [2]. Grating structures serve as frequency se-
lective feedback, which enables longitudinal single-mode op-
eration of the laser. Due to their narrow bandwidth, Bragg
gratings are very sensitive to effects such as chirp, apodization,
etc. As a result, the theoretical description of the gratings
becomes very tedious.

One of the most efficient ways of simulating Bragg gratings
is based on the coupled mode theory (CMT) [3]. CMT
describes an interaction between different modes of the waveg-
uide on the grating as a perturbation. Due to its approxima-
tions, which include a) weak index perturbation and b) no
effect of the index pertubation on the transverse mode profile,
the precision of the coupled mode theory is rather limited.
To increase the precision of the Bragg grating simulation
we consider the application of 2D and 3D Finite-Difference
Time-Domain methods, which are among the most precise
numerical methods for optical simulations. We compare the
performance of 2D and 3D FDTD methods and demonstrate
that the combination of the 3D FDTD method and the coupled
mode theory provides the most efficient way of predicting the
performance of the long grating structures.
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II. FINITE-DIFFERENCE TIME-DOMAIN METHOD
SIMULATION SETUP

To investigate the performance of the FDTD method we
consider a GaAs ridge waveguide with a ridge width and
height of 5 µm and 1.4 µm respectively (figure 1. Such a
geometry was designed for a single-mode operation [4]. The
structure has 50 periodic rectangular grooves which form the
7th-order Bragg grating (figure 1). It has a total length of
55.86 µm and a period of 1.12 µm. The width of the Bragg
gratings is fixed at 5 µm and coincides with the ridge width.

Fig. 1: (Colour online) 3D scheme of a single-mode ridge
waveguide. The inset indicates the fundamental TE00 mode
profile.

Simulations of the light propagation in the Bragg grating
are done with the Lumerical FDTD solver. One of the main
parameters of every FDTD solver is the mesh size. There
are 2 types of mesh that can be set. One of them is a
uniform mesh with a fixed mesh size and the other is a non-
uniform mesh. In general, the influence of the mesh size on the
simulation results can be seen as a shift of the spectrum and a
change of its amplitude (figure 2). The shift of the spectrum is
caused by the numerical dispersion. It is an artifact resulting
from the discrete spatial sampling of the FDTD mesh. If a
simulated structure is long enough the numerical dispersion
shift might be even bigger than the Bragg grating bandwidth.
The spectrum shift and the amplitude change obtained with
the 2D FDTD simulation can be used as an estimate for a
corresponding 3D simulation.

In general, the computational complexity of an FDTD
simulation is defined by the number of mesh elements and
time steps. The number of mesh elements depends on both
the mesh density and size of the simulated structure. In the



Fig. 2: (Colour online) Reflectance spectra of 55 µm Bragg
grating calculated with 2D FDTD method for different uniform
mesh sizes.

case of a Bragg waveguide the size of the simulation should
be selected the way that the fundamental mode is confined
within the simulation region. Using a symmetry plane helps
to reduce the simulation size by 2 times. For example, for
a transverse electric (TE) mode a perfect electric conductor
boundary condition should be used.

The simulation time can be calculated based on the waveg-
uide length. Alternatively, an automatic shut-off of the simu-
lation can be used. A typical approach would be to stop the
simulation as soon as the energy in the system would fall
below a given threshold.

III. EVALUATION OF SIMULATION RESULTS

As a result of an FDTD simulation, the time-dependent field
distribution is calculated. When the cross-section is consid-
ered, the field could be decomposed into the guided modes
and then the transmission and reflection can be analyzed. We
performed the mode projection to calculate the reflectance for
each of the simulations.

As an example problem, in this part we simulated Bragg
gratings with 50, 100, 150, and 250 grooves (3). The nonuni-
form mesh was used in the simulation with the unit cell
approximately equal to 17 nm. The simulation results were
fitted with the coupled mode theory. The reflectance of higher-
order Bragg gratings can become asymmetric with respect to
the wavelength maximum amplitude due to radiation effects.
Here we limited ourselves to a standard CMT without account
of radiation losses. We used a spectrum of the structure with
100 notches as a reference and found CMT parameters based
on the fit. Then we used the results to predict the spectra
of structures with 50, 150, and 250 grooves. We observe a
relatively good agreement of amplitudes and the bandwidths
of predicted spectra with the 3D FDTD simulation results. As
a result, we demonstrate that even a simple CMT can be used
to predict the spectra of longer structures.

Fig. 3: (Colour online) Reflectance spectra calculated with the
3D FDTD and CMT for different lengths of the Bragg gratings.
Dashed lines show the spectra predictions based on the 100
um CMT fit.

To summarize, the 3D FDTD method can be used for Bragg
gratings simulations. It can outperform other methods when
non-periodic structures, such as chirped gratings are consid-
ered. We show that the results of a 3D FDTD simulation can
be used to identify parameters of coupled mode theory, which
can be used to predict a spectrum of a longer structure. There
are grating structures where you would see large differences
between CMT and FDTD simulations which could appear
as a result of high radiation loss or multimode interaction.
However, from the practical point of view, such structures are
less interesting. As a result for laser applications, the amplitude
of the reflectivity of longer structures can be predicted so
that the manufacturing tolerances are larger than the error
introduced by the prediction.
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