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Abstract—Broad-ridge laser diodes exhibit rich lateral mode
dynamics in addition to longitudinal mode dynamics observed in
narrow-ridge laser diodes. To simulate mode dynamics in these
diodes, an effective mode interaction term is derived from the
bandstructure and carrier scattering in the quantum well. The
spatial dependency of pump current densities plays a crucial role
in lateral mode dynamics, and thus, a Drift-Diffusion model is
employed to calculate the current densities with an additional
capturing term.

Index Terms—Laser diodes, Mode competition

Fabry-Pérot type laser diodes show mode-competition phe-
nomena such as mode hopping, where the level of activity
of different longitudinal modes changes over time due to an
antisymmetric interaction of the modes. This effect can be
observed experimentally using a streak camera for narrow
ridge laser diodes [1, 2] and more recently in broad ridge laser
diodes [3]. While a rate equation model exists in literature for
the simulation of the longitudinal mode dynamics in narrow
ridge laser diodes with a single lateral mode [4, 5], we present
a model that can be used for broad ridge laser diodes.

The ridge width of the laser diode is assumed to be small
compared to the resonator length in order to be able to separate
the longitudinal and transverse contributions of the mode
functions ump(r‖, z):

ump(r) = tm(x, z)gp(y),

where the index p is used for the longitudinal modes gp(y)
and m is used for the transverse modes tm(x, z). In the
following the coordinate x denotes the lateral direction, y the
longitudinal direction and z the growth direction. In order to
investigate the mode dynamics of a laser diode, the objective
is to understand how the number of photons in each mode
changes over time. One possibility would be to solve the
Maxwell equations and project the solution onto the different
modes. In the model presented here, equations of motion for
these photon numbers are solved instead, they are given by

d

dt
Smp = −ωmpSmp

∫
dx t̄2m(x)Imχ (ωmp, ne(x), nh(x))

+

∫
dx t̄2m(x)ImχSE (ωmp, ne(x), nh(x))

+
d

dt
Smp

∣∣∣∣
WW
− Smp

τphoton
, (1)

where t̄m(x) = |tm(x, zQW)| is the tranversal mode function
near the quantum well and the angular frequencies of the
different modes are given by ωmp. The susceptibility of
the quantum well χ(ω, ne, nh) and the spontaneous emission
spectrum ImχSE(ω, ne, nh) depend on the lateral coordinate
via the carrier densities ne,h. In the simulations a k · p
bandstructure is used to calculate χ and ImχSE for different
carrier densities assuming Fermi-Dirac distributions.

The photon losses are described by the lifetime τphoton,
which depends on the mirror reflectivities and the absorption
coefficient inside the cavity. The term d

dtSmp

∣∣
WW describes

the interaction of modes via beating vibrations of the carrier
densities in the longitudinal direction and is responsible for the
mode dynamics. This interaction can be found in literature [4]
for laser diodes with a small ridge width. For broad ridge
laser diodes the overlap between different lateral modes also
needs to be considered and the mode interaction is given by
the integral

d

dt
Smp

∣∣∣∣
WW

=
∑
nq

1

2L

SmpSnq

ωmpωnq
·∫

dx t̄2m(x)t̄2n(x)A (ωnq − ωmp, ne(x), nh(x)) ,

where the strength of the interaction is determined by the
function A(∆ω, ne, nh). This function depends strongly on
the frequency difference ∆ω = ωnq − ωmp of the modes and
the carrier densities, an example is shown in Fig. 1. It can
be determined from the quantum well bandstructure and the
relaxation of the beating vibrations due to different scatter-
ing processes such as Coulomb scattering. The equations of
motion for the carriers inside the quantum well are given by

d

dt
ne,h(x) = −B (ne(x), nh(x))− ne,h(x)

τnr

+De,h
∂2

∂x2
ne,h(x) +

d

dt
ne,h(x)

∣∣∣∣
Pump

+
∑
mp

t̄2m(x)
ωmpSmp

L
Imχ (ωmp, ne(x), nh(x)) ,

where B(ne, nh) describe the losses due to spontaneous
emission, τnr the nonradiative losses, De,h is the diffusion
constant and L is the cavity length. The pumping of the
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Fig. 1. Mode interaction strength A(∆ω) for an InGaN quantum well and
different carrier densities as a function of the frequency difference ∆ω of the
two interacting modes.

quantum well is described by the term d
dtne,h(x)

∣∣
Pump which

is calculated in a preceeding steady-state simulation using the
drift-diffusion equations for the bulk carriers. In this steady-
state simulation the time derivatives of the quantum well
carrier densities and the photon numbers are set to zero and
only one longitudinal mode is considered for each lateral
mode. The bulk carriers are coupled to the carriers in the
quantum well via a capture term of the form [6]

d

dt
n3De,h(x)

∣∣∣∣
Capture

= −Ce,hn
3D
e,h(x, z)ηe,h

(
ne,h, n

3D
e,h

)
,

where n3De,h are the bulk carrier densities, Ce,h are simulation
parameters and the efficiency ηe,h is given by

η
(
n, n3D

)
=

∑
k f

3D
k

(
1− fQW

k2D

)
∑

k f
3D
k

.

Here k ·p bandstructures are used to determine Fermi-Dirac
distribution functions for fQW

k2D
and f3Dk . using the densities n

and n3D. The resulting pump current densities are then used
in the simulation of the mode dynamics. The dynamics of the
bulk carrier densities are not considered anymore.

In Fig. 2 an example for the simulation of the mode dynam-
ics of a green laser diode with a ridge width of 10 µm is shown
for different currents. As multiple lateral modes participate
in the mode dynamics, it is difficult to distinguish between
the individual longitudinal modes. The effect of mode rolling
can be observed, where the currently active mode changes
over time from lower to higher wavelengths. As expected,
the mode rolling frequency increases with increasing current.
While in the simulation only one mode cluster is shown, in
the experiment multiple spectrally separated mode clusters can
be observed [3]. One explanation could be fluctuations of the
indium concentration in the quantum wells. These fluctuations
can locally change the maximum of the optical gain and are
not yet included in the simulation.
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Fig. 2. Simulated mode dynamics for a green laser diode with a ridge width of 10 µm and a cavity length of L = 600 µm and different currents. Here, the
laser output is presented as a function of both wavelength and time. The data is acquired by multiplying the time-dependent photon numbers Smp(t) with a
Gaussian function. This Gaussian function is centered at the respective mode wavelengths and has a width of 5 × 10−3 nm.


