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Abstract—The choice of factorization rule can strongly
affect the convergence of solutions to Maxwell equations
based on the orthogonal expansion of electromagnetic fields.
While this issue has already been investigated thoughtfully
for the Fourier basis (plane-wave expansion), for other bases
it has not yet received much attention. Although there are
works showing that, in the case of the Fourier-Bessel basis
(cylindrical wave expansion), use of an inverse factorization
rule can provide faster convergence than Laurent’s rule, these
works neglect the fact that other rules are also possible. In this
work, I demonstrate some different factorization rules for
solving Maxwell equations in cylindrical coordinates using
Fourier-Bessel expansion and I compare their convergence
for a step-index fiber (which has a known exact solution and
thus enables the absolute numerical error to be determined),
as well as for several VCSEL structures. This allows to
identify the factorization rule that gives the fastest convergence
of the modal method using the Fourier-Bessel basis.

Numerical methods based on modal expansion are popu-
lar for the analysis of optical properties of photonic devices.
Their common factor is that the computational domain is
divided into a stack of connected waveguide layers (usually
uniform in the propagation direction) and, in each of these
sections, the electromagnetic field is represented as a linear
combination of its eigenmodes. These eigenmodes can be
determined either rigorously [1], [2], [3] or approximately.
In the first case—known as the classical modal method—the
eigenfunctions are found by calculating zeros of a transcen-
dental equation. However, such equation can be usually con-
structed for simple geometries with no continuous refractive
index variation (e.g. due to the temperature distribution) and
its solution requires searching for the zeros of the transcen-
dental equation in the complex plane, if the structure has
loss or gain. Hence, another approach of representing such
eigenmodes is either with finite differences [4] or an expan-
sion in a set of orthogonal functions defined globally in all
investigated layers. The choice of such orthogonal basis
leads to different variants of the modal method. For exam-
ple, such basis can form a Fourier series, as in very popular
rigorous coupled-wave analysis (RCWA) [5], [6], [7], or
a Bessel-Fourier series [8], [9], [10], [11], [12]. The former
is a natural choice for periodic structures in the Cartesian
coordinate system, whereas the latter is the best option
in cylindrical coordinates. Other possibilities are Hermite-
Gauss functions [13], [14] or wavelets [15], [16], [17], [18].

Globally defined basis has a significant drawback when
analyzing structures with sharp material boundaries that
cause the discontinuities in the electric field. Approxima-
tion of such field with continuous basis functions results
in unwanted Gibbs phenomenon. This can be remedied
by a proper choice of factorization rules, what has been

extensively studied and is well understood in case of Fourier
basis in Cartesian coordinates [19], [20], [21], [22]. Several
authors have presented and successfully implemented sim-
ilar work for the Fourier-Bessel basis[23], [11]. However,
the Fourier-Bessel basis is not algebraically as straightfor-
ward as the Fourier one. For this reason, there is more than
one way to implement the inverse rule.

For any rule, the radial and angular components
of the electric field are expanded in the Fourier-Bessel basis
as follows
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and the magnetic field is expanded similarly. In the above
equations m is the angular mode number, k radial wavevec-
tor and
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∣∣k⊖〉 denote expansion in the Jm−1,
Jm, and Jm+1 basis, respectively, where Jµ is the Bessel
function of the first kind. The vertical component can be
expanded with direct or inverse rule as follows
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The inverse expansion of Ez yields the most precise
results. The different situation is with Er and Eφ. They
may be exp

I compare the modal method convergence in three cases:
direct factorization rule for all electric field components
(Er, Eφ, and Ez), semi-inverse rule, where only Ez is
factorized according to the inverse rule, and full inverse
rule used for Ez and Er. In theory, the last case should
provide the best convergence [11]. However, in cylindrical
coordinates, one does not represent radial and angular
components of the electric field (Er and Eφ, respectively)
directly, but as Er = Es + Ep and Eφ = Es − Ep, where
both Es (expanded in Jm−1 basis, where J is a Bessel
function of the first kind) and Ep (expanded in Jm+1) are
discontinuous at the boundaries. This fact strongly decreases
the convergence of the full inverse rule.

This can be seen by analysis of the convergence rate
of a step-index waveguide with three different factorization
rules (Fig. 1). Because in such simple case the exact solution
is known, it is possible to determine the absolute error
in each case. The lowest error for both HE11 and EH11
modes is obtained with the semi-inverse rule, i.e. when
the vertical component Ez is factorized with the inverse
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Figure 1. Comparison of convergence for three factorization rules
of HE11 and EH11 modes in simple cylindrical step-index waveg-
uide. Black dashed lines indicate the exact solution.

rule, whereas both Er and Eφ are calculated using the di-
rect rule. In both cases, the inverse rule yields the worst
convergence, which may be surprising.

In order to better test the applicability of the inves-
tigated factorization rules, I now compute the resonant
wavelength and the threshold gain of a simple step-gain-
profile VCSEL [24]. Contrary to the simple step-index
waveguide discussed in the previous section, there is no ex-
act method for computing the values of these parameters.
For this reason, I am only able to compare my results
with either experimental data or with results obtained by
different numerical methods. The considered factorization
rules yield consistent results. Surprisingly, in all cases for
the large aperture, the threshold gain is more consistent
than the wavelength. This can be explained by the fact
that there is very little scattering and the dominant losses
are attributed to emission in the vertical direction, which
is only slightly influenced by the differences in the lateral
expansion of the modes. However, the resonant wavelength
stabilizes fastest when direct and semi-inverse rules are used
and the inverse rule yields a different wavelength.

I the talk, I consider also mode advanced designs, like
an antiresonant VCSEL with an oxide island [25], [26].
The general conclusion is that I recommend to always apply
the semi-inverse rule in calculations based on the modal
method using Fourier-Bessel expansion in cylindrical coor-
dinates.
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Figure 2. Convergence of the resonant wavelength and threshold gain
of the HE11 mode in a VCSEL with 8-µm aperture. Gray horizontal lines
indicate the results obtained by other authors [24].
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[25] M. Więckowska, T. Czyszanowski, G. Almuneau, and M. Dems,
“Shaping vertical-cavity surface-emitting laser mode profiles with
an antiresonant oxide island for improved single-mode emission,”
J. Opt. Soc. Am. B, vol. 35, no. 9, p. 2259, 2018.
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