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Abstract—The ultrabroadband operation of transverse-
coupled-cavity vertical-cavity-surface-emitting lasers is investi-
gated in this work. Relying on a closed-form expression of the
intensity modulation response, our model allows for an extended
and fast parametric campaign of the design inputs, as well as an
easy interpretation of the bandwidth enhancement.

I. INTRODUCTION

High-speed intradatacenter low-loss communications have
become essential in today’s rapidly advancing digital land-
scape. To this end, innovative technologies have been explored,
one of which is represented by transverse coupled cavity
(TCC) vertical-cavity surface-emitting lasers (VCSELs) [1]. In
this work we investigate the ultrabroadband operation of these
devices by means of delayed rate equation models [2]–[5].
Under weak feedback conditions [3], [6] and only counting
one round trip, such systems can be reduced to the famous
Lang-Kobayashi model [7]. Instead of solving these delayed
differential equations (DDE) numerically, here we derive a
closed-form expression for the corresponding small signal sys-
tem, yielding an analytical intensity modulation (IM) response.
The analytical nature of our model allows for an extensive
parametric campaign, as well as an easy interpretation of the
bandwidth enhancement phenomenon, paving the way towards
further optimizations.

II. DESCRIPTION OF THE MODEL

The starting point is the system of DDE and the geometry
provided in [3] and sketched in Fig. 1. It consists of a VCSEL
laterally coupled with M cavities (indexed by the subscript m)
characterized by an absorption coefficient αC,m, propagation
constant βC,m, group velocity vg,m, cavity length LC,m and its
corresponding round trip delay τm. Furthermore ηm ∈ [0, 1]
quantifies the coupling strength for each cavity. In these rate
equations, each reflection in the transverse coupled cavities
is viewed as a delayed term in the photon equation. This
assumption comes from a multiple-reflection interpretation of
the transverse resonance condition. The model, including P
reflections indexed by the subscript p, reads:

∂tN + AN + BN2 + CN3 + Gdvg (N − Ntr) (1 − ϵS)S −
I

qAdAR

= 0

∂tS − [ΓGdvg (N − Ntr) (1 − ϵS) − L]S − ΓβspBN2 = 0,
(1)

where N and S represent the carrier and photon densities
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Fig. 1. Schematics of a TCC-VCSEL section.

and L represents the losses. The other symbols have the same
meaning as in [2], [3], [8]. Losses are expressed as:
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which accounts for the multiple reflections. (2) suggests that
the equivalent losses L depend on the past-to-present photon
density ratios, i.e., rm,p

∆
= S (t− pτm) /S(t), so that L is a

function of M ×P variables. At steady state the densities are
constant, yielding rm,p = 1. If a small signal is applied on
top of a bias, rm,p exhibits small variations around 1, thus it
is possible to perform a first order Taylor expansion of L like:

L ≃ L(0) +
∑
m,p

L
′
m,p (rm,p − 1) , (4)

where L(0) ∆
= L
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∂L
∂rm,p

∣∣∣
rm,p=1

. L(0)

indicates the steady-state threshold losses. In this model the
photon lifetime τp is given as an input ensuring L(0) > 0.
Inserting (4) into (1) and regrouping the steady state terms
into RN (N,S) and RS(N,S), the system can be rewritten
as: {

∂tN +RN (N,S) = 0

∂tS +RS(N,S) +
∑

m,p L
′
m,p (rm,p − 1) = 0.

(5)



Exploiting again the small signal condition, let us define the
unknowns as the sum of the DC component and the small
variation around it: N → N0+δN , S → S0+δS and I → I0+
δI . Assuming a time-harmonic dependency e−jωt, the time
derivative operator becomes −jω and the time shift operator
of pτm becomes ejωpτm . The overall system becomes:[

J
0
+ J

1
(ω) + J

F
(ω)

] [
δN
δS

]
=

[
δI/ (qAdAR)

0

]
, (6)

where J
0

is the Jacobian matrix of the steady-state system
evaluated at the bias point, i.e.,

J
0
=

[
∂NRN ∂SRN

∂NRS ∂SRS

]
, (7)

J
1
= −jωI , where I is the identity matrix and

J
F
=
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0 0

0
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where the feedback losses are defined as F(ω)
∆
=∑

m,p L
′

m,p

(
ejωpτm − 1

)
. Please note that the solution of

(6) can be found analytically. Furthermore, in order to find
the minima of the modulus of the determinant of (6), one
should solve a transcendental equation. These correspond to
the resonant frequencies [8].

III. RESULTS AND DISCUSSION

A figure of merit of high-speed lasers is the frequency f3dB
at which their IM response intersects the −3 dB level, namely
the cutoff frequency.

f3dB is analysed as a function of the coupling strength η
and the cavity number M in Fig. 2, assuming equal cavities.
The optimal value of η decreases for an increasing number
of cavities, which is in agreement with [3]. As an additional
validation, our linearized model was also compared with the
numerical DDE solution [9] of (1) (black dashed lines in Fig.
3).

Finally, in Fig. 3 the intensity modulation of a device
with 5 cavities with the same LC = 6.9 µm and different
coupling strengths is reported. As expected from Fig. 2, the
strongly coupled case is worse than the weakly coupled one.
In addition, the weakly coupled case also exhibits a photon-
photon resonance peak above cut-off.

To interpret the bandwidth enhancement, it can be noted
from (6) that, if J

F
(2, 2) = −J

1
(2, 2), i.e., F (ω) = +jω,

the time-derivative term in the photon rate equation gets
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Fig. 2. Cutoff frequency against the coupling strength η for a different number
of coupled cavities (LC = 6.9 µm).
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Fig. 3. Photon response of different cases. Ideal response F(ω) = jω (green);
isolated cavity case (cyan); TCC with 5 weakly coupled cavities (red); TCC
with one of the 5 cavities strongly coupled (yellow). The dashed black lines
are the DDE numerical solutions [9] of (1), validating our linearization.

compensated by the feedback term. In this case the overall
dynamic behaviour is only determined by the carrier equation,
leading to an extremely high f3dB . In Fig. 3 we forced the
feedback term at the ideal value of jω, obtaining the dashed
green line, which is flat over the investigated frequency range.

IV. CONCLUSIONS

In this work, we investigated the ultrabroadband operation
of TCC-VCSELs by means of a linearized delayed rate equa-
tion model, obtaining a closed form for the small signal system
which allows to perform an extended parametric campaign
in a much faster way with respect to the numerical DDE
approach. Furthermore, the analytical formulation allows not
only for an easy interpretation of the mechanism underlying
the bandwidth enhancement, but sets a design target: F(ω) as
close as possible to jω for a large range of frequencies.
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