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Abstract—In this contribution we explain how workflows in
mathematical modeling and numerical simulation are related to
mathematical research data. We discuss how suitable research
data infrastructures for their storage and access can contribute
to more transparency and reproducibility of research results in
this field by implementing the FAIR principles and how they can
assist researchers in the future.

I. COMPLEXITY OF MATHEMATICAL MODELING AND
SIMULATION IN OPTOELECTRONICS

The goal of mathematical modeling and numerical simu-
lation is to contribute to the solution of real-world problems:
Problems are first translated into mathematical ones, which are
then solved using appropriate algorithms, and the results are
subsequently validated and interpreted. In the field of nano-
and optoelectronics, this approach has become very important
for understanding the operating principles of optoelectronic
devices or the properties of novel materials.

We review the process of mathematical modeling and
simulation (MMS) using the example of understanding the
electronic properties of perovskite solar cells. The first step
is to simplify the problem, e.g., by considering solar cells
with a single perovskite layer and planar interfaces. A specific
solar cell is then described by parameters such as the material
composition, layer thicknesses and doping concentrations.

The next step involves finding a mathematical model to
describe the carrier transport inside the device. This model
can be based on the semiconductor equations. They consist
of drift-diffusion equations for electrons and holes coupled
to Poisson’s equation for the self-consistent electric field. For
perovskites migration of ions in the crystal can influence the
carrier transport. Therefore, the drift-diffusion equations must
be extended to include mobile ion species. Furthermore, it may
be important to account for volume exclusion effects on the
ion migration. The resulting model consists of four coupled
partial differential equations.

The solution of the model requires a discretization. For the
spatial discretization, a finite volume method is commonly
employed, along with the Scharfetter-Gummel approximations
for the fluxes. However, the flux approximation for the ions has
to be adapted to account for the volume exclusion effect. These
spatial discretization schemes need to be combined with a
time-stepping method that is designed to handle the additional
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Fig. 1. Typical modeling-simulation workflow and related questions involving
mathematical models and algorithms, see [1].

stiffness caused by the slow migration of the ions. Moreover,
iterative solution methods are required to solve the resulting
nonlinear equations at each time step. The entire solution
process depends on numerical parameters as well as on the
structural properties of the solar cell, which are input into
the software that implements the solver. The solver generates
output data such as the profiles for the densities of electrons,
holes and ions, the electric potential or the current-voltage (IV)
characteristics. These results can be compared to experimental
data or to results from other simulations that may use different
numerical methods or modeling approaches.

This example shows the role of mathematical models,
numerical algorithms and computational workflows and their
interplay for analyzing real-world problems, see Fig. 1.

II. RESEARCH DATA AND INFRASTRUCTURES

In such MMS workflows, a wealth of information and
observations are gathered, generated, or created to validate
research findings. This collection of data, referred to as
research data, encompasses various elements such as experi-
mental data, simulation input parameters, output data (often
large multidimensional arrays), visualizations, mathematical
models, utilized algorithms, software, and associated scientific
papers, see Fig. 2. To manage this complexity, technical
infrastructures are employed for storing data, promoting repro-
ducibility, documentation, and facilitating machine-readability.
This necessitates adhering to unified requirements, such as
the FAIR principles [2], which emphasize the findability,
accessibility, interoperability, and reusability of research data,
or the Linked Open Data principles [3] for sharing machine-
readable interlinked data on the Web.
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Fig. 2. Mathematical research data [1] in MMS is complex and interlinked.

Structured data requires suitable exchange formats. For
array-like data HDFS5, VTK, or CSV are widely used. How-
ever, two aspects are often missing for the implementation
of FAIR principles: appropriate metadata descriptions that
define, for example, which (physical) quantities the data series
represents and which units have been used, and suitable
repositories for these data sets.

To make data sharing more efficient, domain-specific stan-
dards and repositories are important. One example is the
Perovskite Database Project [4], which aims to collect all
data on perovskite solar cells published in peer-reviewed
articles in an open-access database. For this purpose, a data
standard was developed that includes metadata, process data
and performance data. The database contains data of more
than 40.000 devices and enables the analysis of trends towards
higher-performing devices or improved stability.

If an extension of this database for the integration of
simulation results is considered, additional information de-
scribing the simulation must be given: Which model was used?
Which algorithm was implemented for the solver? Which
input parameters were used? In order to handle this complex
semantic information according to the FAIR principles, knowl-
edge management methods such as the use of ontologies and
knowledge graphs are a promising approach.

III. MARDI

The aim of the Mathematical Research Data Initiative
(MaRDI) [1] within the framework of the German National
Research Data Infrastructure (NFDI) [S] is to implement
the FAIR principles for mathematical research data. This is
realized through the development of appropriate data formats,
metadata schemas, and semantic technologies based on on-
tologies and knowledge graphs.

In particular, MaRDI develops semantic technologies to help
researchers to answer the following questions: First, which
model exists for a specific problem? For this purpose, a
model database is being developed. Second, which solvers,
algorithms and software can be used to compute the models?
MaRDI will provide a database of numerical algorithms to
address this. Third, where can experimental data for validation

or other simulation results be found? For this, MaRDI creates
an interface to experimental data, e.g. the perovskite database.
For the documentation of complex simulations, a semantic-
rich workflow description linking to these databases will be
established.

At the moment the databases for mathematical models and
numerical algorithms are being developed. Their implemen-
tations use data models based on the Resource Description
Framework (RDF) and domain-specific ontologies. The ontol-
ogy for the algorithm database, AlgoData, currently consists
of seven classes including problem, algorithm, benchmark,
software, and publication and around 30 properties to describe
their relations. AlgoData [6] can already be accessed online
and currently contains about 160 algorithms for 50 mathe-
matical problems linked to 40 software packages and 800
publications. The ontology for the model database borrows
from concepts such as Model Pathway Diagrams [7]. Its
architecture aims to achieve a balance between describing rich
semantic information on mathematical models while maintain-
ing a compact and simple design.

As FAIR objects stored in these databases mathematical
models and numerical algorithms can be assigned as metadata
to computational results and publications enhancing their
transparency and reproducibility. By harvesting and collecting
this information and linking it to other data sources in the
MaRDI portal, new services can be realized. For example, in
the case of perovskite solar cells, it may allow practitioners to
search for models, solvers and software that have already been
used for simulation for a specific material or device design or
have been validated to describe certain effects, such as ion
migration. For the method developer, it becomes possible to
find specific benchmark problems or (experimental) reference
data for validation.

IV. SUMMARY

We introduced solutions and infrastructures which the math-
ematical consortium MaRDI within the German NFDI is
developing for FAIR mathematical research data. We explained
how those can help to make results in MMS and also in the
field of modeling and numerical simulation of optoelectronic
devices more transparent and reproducible.
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