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Abstract—Transmission electron microscopy is often used to
image semiconductor nanostructures with strain. The resulting
images exhibit symmetries, the source of which is not always
known. We prove mathematically that the intensities are invariant
under specific transformations, which allows us to distinguish
between symmetries of the imaging process itself and symmetries
of the inclusion.

I. INTRODUCTION

The main goal of transmission electron microscopy (TEM)
is to extract information on the specimen from the generated
TEM images. This is particularly used for detecting shapes,
sizes and composition of inclusions in a larger specimen
consisting of a regular crystalline material, like quantum wells
and quantum dots. However, there is no direct way to infer
the geometric properties of the inclusion from the image, due
to the highly non linear behavior of the dynamic diffraction.
Hence, a commonly taken approach is to simulate the imaging
process with inclusions described by parametrized data. Then,
the comparison with experimental pictures can be used to fit
the chosen parameters and deduce the desired data of the
experimental inclusions [1].

An important feature in this process are symmetries, which
may occur in the imaging, for two reasons; first the inclusions
may have certain symmetries and second the TEM images
may display symmetries that are related but not identical. The
latter arise from the fact that the experimental setup may have
its own intrinsic symmetry properties, like classical reciprocity
relations in scattering [2]. We analyze these symmetries and
explain why sometimes TEM images look more symmetric
than the inclusion under investigation [3].

II. MODELING AND SIMULATION OF TEM IMAGES

The simulation of realistic TEM images can be a challeng-
ing problem. They are highly sensitive to strain and in order to
simulate images similar to experimental ones elasticity theory
is required to obtain the strain profile. The strains coming
from elasticity are then inserted in the equations describing
the propagation of electron beams through the crystal, known
as the Darwin–Howie–Whelan (DHW) equations, see [4].
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Fig. 1. Column approximation: An incoming beam is assumed not to leave
a column centered at the entering point. For this column the intensity of the
corresponding pixel is obtained by propagating the beam along a line scan
(blue line) in z-direction at position (xi, yj) to the exit plane. Image from
[3] used under CC-BY.

A toolchain to simulate TEM images by coupling elasticity
solutions with the DHW equations is described in [1].

Here we will focus on interpreting symmetries observed in
TEM images by analyzing mathematically the DHW equa-
tions. While these equations are typically formulated for
infinitely many beams in the dual lattice Λ∗, for all practical
purposes it is sufficient to use only a few important beams, the
so-called m-beam models with wave vectors g ∈ Λ∗

m, because
at high energy and for thin specimens only very few beams are
excited by scattering of the incoming beam. A mathematical
analysis of the corresponding beam selection is given in [5].

Assuming that the crystallographic lattice stays approxi-
mately intact and can be modeled as a strained crystal where
the positions of the lattice points undergo a displacement
u(x, y, z), the DHW equations for strained crystals can be
written in matrix form as:

ϕ̇ :=
d

dz
ϕ = i

(
A+ F (z)

)
ϕ and ϕ(0) = e0 ∈ Cm, (1)

where the vector ϕ = (ϕg)g∈Λ∗
m

∈ Cm contains the relevant
wave functions ϕg of the beam associated with wave vector
g ∈ Λ∗

m, with g = 0 denoting the incoming beam [3].
The system matrix A = V + Σ includes the influence

of the electrostatic interaction potential V and the so-called
excitation errors Σ = diag(sg), which are experimental
parameters that can easily be controlled, e.g by tilting the
sample. The elastic displacement u enters DHW (1) via the
strain profile F (z) = diag(g · d

dzu(x, y, z)) ∈ Rd×d, which



contains the projections of the strains to the individual wave
vectors g ∈ Λ∗

m. The vertical coordinate z ∈ [0, z∗] gives the
depth inside the specimen (z = 0 entry plane and z = z∗ exit
plane), whereas the horizontal coordinates (x, y) are fixed and
correspond to the image pixel, see Fig. 1.

In Fig. 2 we see simulated TEM images for a pyramidal
quantum dot for different choices of the vector g, illustrating
the sensitivity of TEM images to different components of the
displacement.

Fig. 2. Simulation of TEM images for pyramidal QD: a) QD geometry. b)
and d) Different components of displacement field. c) and e) corresponding
TEM images for strong beam conditions as indicated by the direction of the
chosen vectors g. Images from [3] used under CC-BY.

III. SYMMETRIES IN TEM IMAGES

The simulated TEM images in Fig. 2 c) and e) show a
pixelwise symmetry, i.e. for two different pixels (x0, y0) and
(x1, y1) we have the same intensities: |ϕg(z∗;x0, y0)|2 =
|ϕg(z∗;x1, y1)|2. For Fig. 2 e) this in not surprising since for
both pixels the profile of the corresponding vertical component
of the displacement is the same, see Fig. 2 d). However, in
Fig. 2 c) the profiles have opposite values, see Fig. 2 b). This
observation raises the question whether this symmetry is a
result of the specific strain profile or a general property of
the imaging process. We approach this question by answering
the following more general question: Which transformations
(A,F ) → (Ã, F̃ ) give the same intensity?

By analysing the DHW equations mathematically we proved
that in the two-beam approximation Λ2 = {0,g′} the follow-
ing hold:

1) (Sign change) Under strong beam conditions, i.e. s0 =
sg′ = 0, changing the sign of the strain

(
F (z) ⇝

−F (z)
)

is a symmetry.
2) (Midplane reflection) Midplane reflection

(
F (z) ⇝

F (z∗−z)
)

is a symmetry.
3) (Excitation error symmetry) Combination of the above,(

F (z)⇝ −F (z∗−z)
)
, is a symmetry, if in addition we

change the sign of the excitation error sg′ ⇝ −sg′ .
These are properties of the imaging process and are inde-

pendent of the shape of the strain profile. The sign change
symmetry 1) directly explains the observation for Fig. 2 c).
In Fig. 3 b) we see a series of TEM images of a spherical
quantum dot, for different depths of the quantum dot and
different excitation errors. The different symmetries observed
here (colored boxes) can be explained by these three properties
in combination with the shape of the strain profile. For
example, from the excitation error symmetry 3) we can apply
midplane reflection plus sign change of the strain, which for

the odd strain profile in Fig. 3 c) corresponds to shifting the
strain with respect to the center, and then change the sign of
the excitation error. This explains the symmetric images in
Fig. 3b) indicated by the green and red boxes.

For more examples we refer to [3], where the detailed
proofs of these and additional symmetry properties, as well
as an analysis in the case of absorption, can be found. A
comprehensive mathematical analysis of the DHW equations
can be found in [6]. The theory we developed allows us to
distinguish between symmetries of the imaging process and
symmetries of the strain field. This can be used to extract
information for the inclusion, e.g. shape or size, as well as to
imaging of dislocations, since the TEM images are sensitive
to the strain field induced by the dislocation.
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Fig. 3. Symmetries between images: a) Schematics of the position of the
quantum dot b) Series of TEM images for a spherical quantum dot for
varying positions and excitation errors: For sg = 0 the images are pixelwise
symmetric with respect to the center (red boxes). For sg ̸= 0 they are
symmetric if in addition the sign of the excitation error is changed (green
boxes). The images are mirrored to each other with respect to the center for
the same excitation error ( α and β blue boxes) or with respect to the sign of
the excitation error for a fixed position (α and γ blue boxes). Adapted from
[7] used under CC-BY. c) Plot of a shifted odd function F (z) (black) and the
midplane reflection of it (red) illustrating that shifting (black dotted) needs
an additional sign change to correspond to midplane reflection. Adapted from
[3] used under CC-BY.
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