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Abstract—The design of narrow-linewidth lasers requires
stochastic laser models providing a realistic description of the
noise in the device. We present a statistical inference approach to
extract the frequency noise characteristics and model parameters
of narrow-linewidth lasers from delayed self-heterodyne beat note
experiments. By exploiting prior knowledge about the statistical
distribution of the measurement data, accurate estimates of the
parameters of the free running laser can be achieved even in
the presence of considerable detector noise. The approach is
demonstrated for simulated time series data using a stochastic
laser rate equation model including 1/f–type noise.

I. MOTIVATION

Narrow-linewidth lasers are core elements of emerging
quantum technologies such as optical atomic clocks, matter-
wave interferometers and quantum computers based on ion traps
or neutral atoms in optical lattices. These applications require
highly coherent light with a narrow intrinsic (Lorentzian)
linewidth [1], which is typically broadened by additional 1/f–
type noise (also flicker noise). Because of this non-Markovian
noise, the laser linewidth depends on the measurement time
such that a detailed characterization of the spectral quality
of the laser requires the measurement of the frequency noise
power spectral density (FN–PSD).

For the theoretical design of improved low-noise devices,
stochastic laser models are required that provide an accurate
description of the fluctuation characteristics matching experi-
mental observations. A particular challenge is the quantitatively
correct inclusion of non-Markovian noise that generates charac-
teristic frequency drifts and inhomogeneous broadening of the
lineshape. We strive for a data-driven modeling approach using
time series data from delayed self-heterodyne (DSH) beat note
measurements, see Fig. 1 (a), which is the standard experimental
technique to determine the laser linewidth [2]. The method
allows to extract the FN–PSD and numerous model parameters
from time series data, but a direct analysis of the measured
data is not trivial as both the footprint of the interferometer
as well as the detector noise must be taken into account in
order to reconstruct the noise characteristics of the free-running
laser. In this paper, we describe a Bayesian inference approach
involving a Markov-chain Monte Carlo (MCMC) method, to
estimate model parameters from DSH experiments by taking all
important aspects of the measurement process into account [3].
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Fig. 1. (a) Experimental setup of the DSH method, reprinted with permission
from [4]. (b) Time series of frequency fluctuations around the continuous
wave frequency (moving average over 50 ns). Characteristic frequency drifts
are induced by the colored noise in Eq. (1). (c) Inferred power spectral density
Sz,z (ω) estimated using the MCMC method along with the periodogram
Ŝz,z (ω) of a single observed time series z (t). (d) Estimated FN–PSD
Sx,x (ω) of the laser and periodogram of the hidden time series x (t).

II. STOCHASTIC LASER RATE EQUATIONS

We aim for parameter identification and estimation of the
FN–PSD of a single-mode semiconductor laser obeying the
stochastic laser rate equations (Langevin equations) [4]

Ṗ = −γ (P − Pth) +G (P,N)P +Gsp (P,N) + FP (t) ,

ϕ̇ =
1

2
αHG (P,N) + Fϕ (t) , (1)

Ṅ =
ηI

q
−R (N)−G (P,N)P −Gsp (P,N) + FN (t) ,



where P is the number of photons, ϕ is the optical phase and N
is the number of carriers in the active region. Moreover, γ is the
optical loss rate, Pth is the thermal photon number, G describes
the net-gain function, Gsp is the rate of spontaneous emission
into the lasing mode, αH is the linewidth enhancement factor,
η is the injection efficiency, I is the pump current and R is the
rate of non-radiative recombination and spontaneous emission
into waste modes. The Langevin noise sources FP,N,ϕ (t)
include next to the (commonly considered) white noise part [1]
also colored noise contributions with a 1/fν–type frequency
dependency that give rise to characteristic frequency drifts, see
Fig. 1 (b). Further details on the model equations including
correlation functions and parameter values are given in Ref. [4].

III. BAYESIAN PARAMETER ESTIMATION

The stochastic rate equation model (1) generates a stationary
Gaussian process with time-correlated noise, for which numer-
ous parameter estimation approaches exist. Most prominent is
the maximum likelihood estimation method applied on time
domain data, which is however computationally intractable in
the present case because of the typically long interferometer
delay τd and the long-time correlations due to the 1/f noise.
This requires both the consideration of long time series and
a high-dimensional Markovian embedding, which makes the
construction and maximization of the likelihood function very
expensive. These limitations can be overcome by formulating
the estimation procedure in the frequency domain, but this
requires knowledge of the expected statistical distribution of
the periodogram data, which is no longer Gaussian distributed.

In the case of FN–PSD reconstruction [3, 4], the measured
signal of the DSH experiment can be described by

z (t) = (h ∗ x) (t) + ξ (t) , (2)

where z (t) is the observed time series, h (t) = δ (t)−δ (t− τd)
is the transfer function of the interferometer (convolution
kernel), x (t) is the hidden time series of the frequency
fluctuations of the laser (i.e., x (t) =̂ ω (t) − ω0 = ϕ̇ (t),
see Fig. 1 (b)) and ξ (t) is additive detector noise. Our goal
is to characterize the statistical properties of x (t). Fourier
transform of Eq. (2) yields a relation for the PSDs

Sz,z (ω) = |H (ω)|2 Sx,x (ω) + Sξ,ξ (ω) , (3)

where Sz,z (ω) is the PSD of the observed data and the transfer
function is H (ω) = 1− exp (iωτd). We assume the following
models for the hidden signal and the detector noise PSD

Sx,x (ω) =
C

|ω|ν
+ S∞, Sξ,ξ (ω) = σ2ω2, (4)

where S∞ is the intrinsic linewidth and the parameters C and ν
quantify the flicker noise. We seek to estimate parameters from
a single time series, which requires prior knowledge about the
statistical distribution of the corresponding periodogram data.
Transformation of random variables shows that the periodogram
of a Gaussian time series is exponentially distributed

Ŝz,z (ω) ∼ Exp (λ (ω)) , Sz,z (ω) = ⟨Ŝz,z (ω)⟩ = λ−1 (ω) ,
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Fig. 2. Histograms of parameter estimates (marginal probability distributions)
characterizing the FN–PSD in Eq. (4) obtained using the MCMC method.
The sampled distributions are shown along with normally (Gaussian) and
log-normally distributed probability density distributions (pdfs).

where the parameter λ (ω) is identified with the inverse
expectation value λ (ω) = S−1

z,z (ω) using the model PSDs (4)
at each frequency ω. We employ a Markov-chain Monte Carlo
(MCMC) method (Metropolis–Hastings algorithm) [5] to infer
on the most probable set of parameters underlying a given time
series by maximizing the corresponding likelihood function.
Notably, the method provides a quantification of the estimation
uncertainty right away, see Fig. 2 .

IV. SUMMARY

Bayesian inference enables the estimation of unknown
parameters from noisy measurement data. The method thus
can be used to improve the evaluation of experiments and to
identify hardly accessible parameters for dynamical models.
We demonstrate the approach using time series data from DSH
measurements on narrow-linewidth lasers and extract parameter
estimates to improve the modeling of noise sources in lasers.
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