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Abstract—We discuss numerical challenges in constructing and
resolving spectral problems for photonic crystal surface-emitting
lasers with large (up to several mm2) emission area. We show
that finite difference schemes with moderate and large domain
discretization steps provide sufficient accuracy of several major
(lowest-threshold) modes of particular device designs.

Semiconductor diode lasers are small, efficient, and rela-
tively cheap devices used in many modern applications. Mul-
tiple applications require emission powers exceeding several
ten watts from a single diode and up to a few kilowatts from
a combined laser system. In this work, we consider photonic
crystal (PC) surface-emitting lasers (SELs), see Fig. 1, which,
in contrast to edge-emitting broad-area lasers, are capable of
emitting high-power (up to 80 W pulsed [1] and 50 W CW [2])
beams of nearly perfect quality in the (z) direction, perpen-
dicular to the (x/y) plain of the active material. The critical
part of PCSELs, enabling an efficient coupling of optical fields
generated within the active layer and their redirection along
the z axis, is a 2-dimensional PC layer. In simple cases, it
can be vertically homogeneous or consist of several vertically
homogeneous layers (e.g., three layers as shown in Fig. 1).
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Fig. 1. Schematic depiction of exemplary PCSEL with the PC layer consisting
of three vertically homogeneous sublayers.

The periodic features of the PC layer in best PCSEL devices
are filled with air, which guarantees a large refractive index
contrast and, thus, a large coupling of counter- and cross-
propagating fields within the PC. This high index contrast
allows for the formation of firmly centered main modes
already in moderate (∼ 0.1 mm2) emission area PCSELs.
Formation of similarly centered modes in PCSELs having PC
layers with less contrast in refractive indices will require larger
emission areas and, thus, more efficient numerical algorithms
to cope with the increased size.

To model high-power � 0.1 mm2 PCSELs, we exploit a
three-dimensional coupled-wave model [3], [4] derived for TE
mode operation, relying on the dielectric function’s periodicity

within the PC layer and corresponding Fourier expansion
of this function and the electrical fields. Due to a special
choice of the lattice parameter a, four nonvanishing basic
waves (space and time-dependent field expansion components
at e−iβ0(mx+ny), β0 = 2π

a , |m| + |n| = 1) can be written
as u±(x, y, t)Θ0(z) and v±(x, y, t)Θ0(z). The fundamental
guided mode Θ0(z) and related propagation factor β ≈ β0
solve a one-dimensional Helmholz problem. Dynamic equa-
tions [3] for slowly varying field amplitudes u(x, y, t) = (u

+

u−),
v(x, y, t) = (v

+

v−) can be written as
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∂
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)
+Fsp, (x, y) ∈ [0, L]×[0, L],

B.C.: u+|x=0 = u−|x=L = v+|y=0 = v−|y=L = 0,

H(∆β(N)) = iC−
(
σ ∂
∂x 0
0 σ ∂

∂y

)
−i∆β(N), σ =

(
1 0
0 −1

)
.

Here vg , Fsp, and ∆β(N) are the group velocity, the Langevin
noise sources, and the relative propagation factor, which
depends on the local carrier density governed by the addi-
tional diffusive carrier rate equation. For any fixed N(x, y),
∆β(N) = ∆β is a function of (x, y). The field equations
above are linear w.r.t. (uv ) and imply the spectral problem [4],

H(∆β)Θ = ΛΘ, Θ(x, y) =
(

Θu
Θv

)
satisfies B.C.. (1)

This problem, given by a system of four 2-D PDEs, is very
important when designing PCSEL devices. For example, the
location of several major (low-threshold) modes in the case
of vanishing or spatially uniform ∆β (“cold cavity” PCSEL
case) allows a prediction of lasing threshold and an estimation
of the side mode damping in the close-to-threshold state.

To complete the definition of the spectral problem, one has
to construct a complex 4× 4 field coupling matrix C entering
operator H. Estimation of C is a nontrivial task: it requires
knowledge of Θ0(z), Fourier expansion coefficients of the
dielectric function ξm,n, and Green’s functions Gn,m(z, z′)
solving the inhomogeneous Helmholz problem[

d2

dz2 + k20n
2
0(z)− (m2 + n2)β2

0

]
Gm,n(z, z′) = −δ(z − z′)

along the vertical axis. Typically [3], [4], C is represented as
a sum of a nonhermitian matrix Crad (out-of-plane coupling
via radiative waves with m = n = 0), and two Hermitian
matrices C1D (1D coupling of counterpropagating waves) and
C2D (2D coupling via higher order, |m|+|n| > 1, modes). The
last matrix is an infinite sum, C2D =

∑
m,nC

(m,n)
2D . In our
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Fig. 2. Construction of matrix C for a double-lattice air-hole PCSEL
similar to that of Ref. [3]. (a): convergence of elements of C2D and (b):
corresponding eigenvalues of C with increasing number M of Fourier modes.

calculations, we truncate this sum, accounting only for C(m,n)
2D

with {|m|, |n|} ≤ M . In Fig. 2, we analyze the precision
of our calculations as a function of M . Panel (a) shows the
amplitudes of four elements of this matrix as functions of M .
We achieve 1% relative error of these elements at M ≈ 90.
Panel (b) reveals changes in the spectra of C, depending on
the truncation factor M (yellow: small M , dark: large M ).
Already for M = 20 (black crosses, left from the accumulation
of dark bullets), the spectra can be resolved satisfactorily.

The matrix components C
(m,n)
2D depend on the

fundamental mode intensity and Fourier coefficients
ξm±1,n, ξm,n±1 within each PC layer and double integrals∫
Sk

Θ∗0(z)
∫
Sl
Gm,n(z, z′)Θ0(z′)dz′dz for each combination

of PC layers Sk and Sl. Calculating these double integrals
using standard domain discretization-based numerical
approximations for multiple combinations of (m,n) and,
possibly, multiple PC sublayers is a hard numerical task that
can take hours or even days. Fortunately, Θ0 and Gm,n can
be written using transfer matrices and exponential functions,
such that the required integral relations can be expressed
by analytic formulas. An advantage of our approach is a
significant speedup in calculations and increased precision of
matrix estimation (large M can be used, discretization-induced
errors are absent). In this way, we could estimate C using
M = 500 for PCSELs with 1 and 3 PC layers in 25 and 108
seconds, whereas similar work for a PCSEL with 6 PC and
27 overall layers using M = 20 took 12 seconds. Notably,
analytic formulas representing Gm,n and related double
integrals for large |m| and |n| should be used with care since
we handle very large and small exponentials ∼e±

√
m2+n2β0z .

Our first simulations using built-in sinh and cosh functions
within transfer matrices failed at M = 25. By treating large
exponentials within these functions separately, we could run
calculations up to M ≈ 200. After additionally accounting
for computer-arithmetic problems (such as ε + 1 − 1 ≡ 0
whereas ε+ (1− 1) ≡ ε for |ε| < 10−16), calculations can be
done now for M = 500 and more.

Let us return to the solution of the spectral problem (1).
Since we cannot resolve this problem analytically, we rely
on fully numerical procedures. The algorithm is based on
field discretization using a uniform staggered spatial mesh,
Θ(x, y) 7→ Θh, and approximation of the functions and their
spatial derivatives with central difference schemes. As a result,
Eq. (1) is approximated by the generalized spectral problem

AhΘh = PhΛhΘh. (2)

Ah, Ph are non-hermitian complex sparse 4n × 4n matrices,
n is the number of the mesh steps along each side of
the calculation domain. This (finite-dimensional) numerical
scheme does not provide all (i.e., an infinite number of) modes
of the original problem; the numerically induced error in the
approximation of the resolved modes grows with increasing
mesh step h = L

n . For large-area PCSELs suitable for very
high powers (e.g., L = 4 mm) and moderate discretization
steps (e.g, h = 10µm, n = 400), Eq. (2) defines nearly a
million modes, which can not all be found due to computer
memory and time constraints. Fortunately, only a few modes
are important, such that we can exploit the sparseness of the
matrices and look only for several dominant modes preselected
in preliminary calculations with a rough numerical mesh, see
the light blue dots and the five main modes indicated with
symbols in Fig. 3(a). Already the initial calculations provide
sufficiently good precision of the dominant modes; see panels
(b) and (c) showing a convergence of three main modes with
an increase of n from 8 to 28.
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Fig. 3. (a): main eigenvalues of Eq. (2) for n = 28 (light blue) and of C
(magenta). (b),(c): convergence of the main (b) and the 2nd/3rd (c) eigenvalues
with growing number of mesh steps. Bottom row: total field intensity of five
dominant modes, indicated with symbols in upper panels. L= 4mm, other
parameters are as in Fig. 2, only the refractive index contrast in the PC is
reduced.

In conclusion, we demonstrated how rough numerical
meshes with n ∼ 20, 2nd-order precision finite difference
schemes, and standard spectral solvers provide a good approx-
imation of a few major optical modes. Once better precision or
more modes are required, we exploit higher-order numerical
schemes, which reduce discretization-induced errors by a few
orders or more, depending on the mesh factor n.

This work was performed in the frame of the project
“PCSELence” (K487/2022) funded by the German Leibniz
Association.
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