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I. INTRODUCTION 

In this paper, we investigated the degradation mechanisms 
that negatively affect the reliability of UV-C LEDs. In 
particular, we modeled the process that involves trap 
generation identified through experimental electrical 
characteristics and contact degradation by means of numerical 
TCAD simulations. 

In this study, we investigated a single QW UV-C LED 
with emission wavelength of 265 nm, and an area of 
10

��
��

�� . The sample has been tested with a constant 
current stress at 100 A/cm2 (100 mA) for more than 300 h 
(19000 min). Figure 1 reports the electrical characteristics 
before and after stress. We subdivided the electrical 
characteristic into two regions: region (a) above the turn-on 
voltage, where the effects of the equivalent series resistance 
prevails; we could observe a shift of the turn-on voltage 
toward higher voltages and an increase in the equivalent series 
resistance after the stress.  

 

Figure 1: Electrical characteristic before and after the ageing test. 

The region (b) is dominated by the forward leakage current 
generated by the presence of defects in the space charge region 
[1], that act as traps for trap-assisted tunneling processes 

(TAT) [2]. The increase in forward leakage current indicates 
a rise in the trap concentration in the depletion region during 
the ageing test [3]. To model these mechanisms, we created a 
model of the device that implements the structure through 
TCAD Sentaurus [4], [5], using typical parameters found in 
literature  [6]–[11] . 

II. MODELING DEGRADATION NEAR THE CONTACT 

The high current region is affected by a change in the turn-on 
voltage and by an increase in series resistance during the 
ageing. These effects are due to the degradation of the contact 
properties and/or semiconductor [12], [13]. The largest 
impact on this trend is caused by the de-activation of Mg 
acceptors adjacent to the p-contact. In particular, during the 
ageing, a partial passivation of Mg doping might happen [13], 
[14] leading to a thicker tunneling barrier at the p-contact. 
Thus, hole injection is obstructed, causing a decrease in 
carrier injection, as illustrated in Figure 2. 

 

Figure 2: Model for the degradation of the p-contact. Direct tunneling is 

implemented in the first 10 nm adjacent to the metal. In this region, a 
passivation of Mg doping happens (whose simulated trend is in the 

insertion).  

Therefore, we define the model of p-contact as a Schottky 
contact with a work function equal to 6.35 eV (Platinum). We 
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considered direct tunneling as the dominant injection process 
from the metal contact to the first 10 nm of the p-GaN layer 
and, and after a first calibration of the tunneling mass for 
holes, we reached a good reproduction of the initial electrical 
characteristic at 0 min. To reproduce the aged curve, we 
proceeded by decreasing the p-doping concentration of the 
first 10 nm of p-GaN close to the contact and by slightly 
increasing the series resistance.  

III. MODELING TAT 

The forward leakage current, as demonstrated several 
times [2], [3], depends on the TAT. We reproduced this 
mechanism by means of the implementation of different 
nonlocal meshes to simulate different tunneling paths in the 
depleted region (interlayer). Here, we collocated traps at �	 −

3.5 �� as experimentally demonstrated in [15], whereas we 
defined a NLM for electrons from the interlayer/LB interface 
toward the traps and three different NLMs for holes from the 
EBL toward the traps in the interlayer, as illustrated in the 
simulated band diagram in Figure 3.  

Figure 3: Simulated band diagram at 3.5 V and schematic representation 
of the implemented model for TAT.  

In this way, when at low voltages the carriers are energetically 
aligned with traps, they should tunnel into the interlayer, close 
to the defects, where they recombine through an additional 
implemented SRH-like recombination process, generating the 
leakage current [2], [4], [16], [17]. To reproduce the curves at 
0 min, we collocated a decreasing trap concentration in the 
interlayer (peak in EBL), and calibrated the relative tunneling 
masses. Subsequently, we reached a good correspondence 
with the aged curve simply by increasing the defect density in 
the interlayer and reducing the parasitic shunt resistance, as 
reported in Figure 4. This confirmed the hypothesis of trap 
generation/diffusion in the depletion region from the EBL 
toward the active region during the stress test. 

IV. CONCLUSIONS 

In conclusion, we reached a good agreement between 
experimental measurement and numerical simulations, both in 
the forward leakage current region and over the turn-on 
voltage. In particular, we modeled the leakage current by 
considering an increase in the TAT components, and the drive 
voltage increase with a Mg deactivation model for the p-
contact. Therefore, we propose a generation/diffusion of 
defects from the EBL toward the active region, and a partial 

passivation of Mg in the region adjacent to p-contact during 
the stress test.  

 

Figure 4: Comparison between the experimental I-V curves and the 
simulated ones before and after the ageing test. The insertion reports the 

same curves in linear scale. 
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