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Abstract— A new, fast, and efficient full vectorial multi-domain spectral
method (MDSM) to simulate optical devices is presented. The presented
method is mesh-free and is used for modal analysis of optical waveguides
and to simulate optical wave propagation and scattering in two dimen-
sional structures. As common to spectral methods, the presented method
is very fast and accurate. Simulations of some complex structures were
performed in less than a second using personal computer.

I. INTRODUCTION

The optics industry has reached sophisticated levels of fabrications,
applications, and miniaturization. This has increased the demand for
fast and consistent simulation tools. Such tools are required to be
applicable to arbitrary structures of complex geometries and wide-
ranging material properties. Also, these tools should be capable of
large scale applications.

With the growing complexities of numerically studied problems,
the spectral method starts gaining more attention mainly because of
its high level of analyticity. This reduces the computational memory
and time requirements where a major part of the problem is solved
analytically. Spectral methods are a special family of weighted resid-
ual methods where the unknown functions are approximated by either
a functional expansion of or interpolation (collocation method) using
a preselected basis set. Functional expansion is used in this work. In
MDSM, the computational window is divided into domains where
the structural parameters are smooth and the discontinuities lie at the
boundaries [1]-[3]. This domain division is used to avoid the Gibbs
phenomenon, which is associated with discontinuities of structural
functions. Then, the spectral method is applied in each domain to
build the numerical matrices and vectors. These are then joined by
applying the proper boundary conditions between domains. Structural
functions are problem dependent. In this work, the structural function
is the dielectric constant.

The presented method is applicable for 3D structures that are
invariant in one direction (assumed to be the z-direction). For the
variant cross-section of the structure and as standardly done in
dimension reduction methods, the structure function is divided into
M regions in such a way that in each region, the cross-section is
invariant in another dimension (x axis). Then the regions are divided
into N layers. So, as shown in Fig.1, the computational window
is divided into domains where the dielectric properties, which are
the structural functions, are homogeneous in each domain. Cartesian
coordinates are assumed and used in this work although any other
2D system can be used.

Since the domains are defined such that each one is homogeneous,
the governing harmonic wave equation in each domain is simply
Helmholtz equation, which is

J. Campbell Scott
IBM Almaden Research Center

D. | | e D,
) D|2
T D, D,, D, | e D,
—P>x
Fig. 1. The division of the structure into domains

for the mn*" domain where kg is the free space wavenumber and €y,
is the dielectric constant in this domain. n, is effective propagation
index in the z direction. In the case of wave propagation analysis, it
represents the projection in z direction of the input field wavenumber.
In modal analysis it is the effective refractive index of the mode.

In the presented multi-domain approach, the wave function and
mode profile are approximated by 1D known basis set in one axis
and the approximating coefficients are set as functions of the second
dimension as follows

Emn =Y cunt (@) Prnt (y) )
l
where Py, (y) are the preselected basis functions. By applying
boundary conditions of the base field components in all the layers
in the same region and by combining their corresponding matrices,
we obtain the following differential system that represents the wave
equation in each region
d*cm, dem
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This equation can be solved in many ways. In this work, it is solved
using reduced eigenvalues and eigenvectors sets. So, the solution of
this equation is simply

em(z) = R{neAyfn(zfmm)fm IR A @=emi1)p @)

where A7, (A%) and R, (R%,) are the forward (backward) traveling
eigenvalues and their corresponding eigenvectors matrices. Eigenval-
ues are arranged as forward and backward traveling to ensure that the
exponentials are not diverging. The only unknowns in this solution
are f,,, and b,,,. These shall be found after applying vertical boundary
and initial conditions.

II. SOME RESULTS
A. Multimode Interference (MMI) Switch wave propagation

?Emn  0*Emn 5 5 The method has been used to simulate optical wave propagation
dz2 oy2 + ko (5'"" - ”Z) Emn =0 ) in MMI switch, recently presented by Yin et al. [4]. The structure
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of the switch is shown in Fig.2, where the switching of the field is
managed by changing nonlinearly the index in the shaded region.
If the index of the shaded area is set to n2, the field is guided into
Output A (Con’ state), and it is guided into Output B (’off” state) if the
shaded index is equal to n;. The switch was analyzed ( [4]) using 2-
D beam propagation method (BPM) at A = 1.55um. Fig.3 and Fig.4
show TE light intensities obtained by the presented method and by
BPM [4] for ’on’ state and ’off’ state respectively. The calculated
optical crosstalk is 25.3 dB. As can be seen from the figures, the
wave propagation simulation is similar for both states and by using
the two different methods.
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Fig. 2. The structure of the studied MMI [4]
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Fig. 3. Wave propagation in ’on’ state; BPM [4] (top) and MDSM (bottom)
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Fig. 4. Wave propagation in ’off” state; BPM [4] (top) and MDSM (bottom)

B. Nano scale grating scattering

Nano scale molecular optoelectronics have attracted interest in the
recent years. For these devices, an accurate optical field distribution
calculation is essential initial step. We used the presented method in
our work in this area. It exhibit a superior performance both in time
and accuracy when compared with RCWA software. Fig.5 compared
vectorial distribution for a wave at normal incidence on a nano optical
grating using the presented method with RCWA. In this analysis, E,
field is a result of diffraction of £, component.. As can be seen, the
two methods highly agree.

C. Modal analysis of multimode wide fully etched waveguide

Wide fully etched waveguide structures (Figure-6) are used as
multimode waveguides. Such structure allows many modes, where
the separations between the effective indices are very small and are
difficult to detect. The presented method obtains them easily. The
used parameters are w = 10 um, h = 0.5 pm, ns = 1.95, n. = 2.3,
and n. = 1 at 1.30 um wavelength. The contours of amplitudes of
the 11 allowed modes are shown in Figure-7.
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Fig. 5. A comparison between the presented method and RCWA

Fig. 6. Wide fully etched waveguide geometry
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Fig. 7. The contours of the amplitudes of the allowed modes in the studied
fully etched waveguide
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