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III. RESULTS 
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experimental and simulated data show similar 
trends.  

  
Figure 2. Capacitance transient measurements on HIT cells 
(circles) and  simulated minority carrier density as a function 
of pulse time (triangles).  

 
Next we analyze how the c-Si defects affect 

minority carrier decay once the light is switched off.  
The simulated results are plotted in Fig. 3.  The 
light pulse length is 10 μs.  The capture cross 
section for holes in the c-Si defects is varied for an 
order of magnitude between two curves.  
Simulations show two exponential decays: a faster 
one, with lifetimes less than a millisecond and a 
slower one, with larger lifetimes.  The 
recombination in the bulk c-Si affects the faster one 
significantly more than the slower one. 

As the dominant recombination mechanism 
is often observed to vary with temperature, it is 
important to study temperature dependant lifetimes.  
Fig. 4 shows temperature dependence of hole 
density at t = 1 ms after the light has been switched 
off.  As the temperature increases, the higher 
generation rate competes with the increased 
recombination.  As the bias increases, the space-
charge region width decreases and more holes are 
generated outside of the electric field.  Therefore, 
more holes will diffuse within the absorber rather 
than be transported over the interface barrier. 

 
Figure 3. Simulated hole decay as a function of time.  

 
Figure 4. Temperature dependence of minority carrier density 
at 0 and 0.5 V bias. 

Simulations with higher wavelength illumination 
(not plotted) confirm this. With our choice of 
parameters, the decay rates overcome the higher 
generation for T > 250 K at 1 ms in zero bias, and 
for T  > 120 K at 0.5 V bias. 

CONCLUSIONS 

We have explored the minority carriers’ 
behavior after a short light pulse illumination. We 
have found that the bulk c-Si properties are 
responsible for the fast decays and that the minority 
carriers will recombine faster in forward bias. 

ACKNOWLEDGEMENTS 
 

The authors are thankful to Charles Teplin for 
reviewing the manuscript and suggestions.  

This work was supported by the U.S. 
Department of Energy under Contract No. DE-
AC36-08-GO28308 with the National Renewable 
Energy Laboratory. This paper is subject to 
government rights. 

REFERENCES 

1. M. Taguchi, H. Sakata, Y. Yoshimine, E. Maruyama, 
A. Terakawa, and M. Tanaka,  in Proc. 31 IEEE PVSEC 
(2005), p. 866. 
2. M. Taguchi, et al., Progress in Photovoltaics 8, 503-
513 (2000). 
3. S. Taira, et al, in 22nd EU PVSEC (Milan, 2007), pp. 
932-936. 
4. Synopsis, "TCAD DEVICE Manual" 
www.synopsis.com, (Zurich, Switzerland, 2006). 
5. A. Kanevce, and W. K. Metzger,  Journal of Applied 
Physics 105 (2009). 
 

30

20

10

0S
ig

na
l a

m
pl

itu
de

 (a
u)

10-5  10-3  10-1

Pulse time (s)

6
5
4
3
2
1
0

 H
ole density (10

17 cm
-3)

 Experiment
Simulation

4

3

2

1

H
ol

e 
de

ns
ity

  (
10

17
cm

-3
)

10-4 10-3 10-2 10-1

Time (s)

σh increases

4

3

2

1

H
ol

e 
de

ns
ity

  (
 1

017
cm

-3
)

300250200150100
Temperature (K)

 0 V
 0.5 V

t = 1 ms

NUSOD 2010

74




