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Abstract- In this paper we present a method for modeling 
ultrashort-laser-pulse compressors/stretchers using 
Kostenbauder matrices. In this method, a Gaussian pulse is 
represented by a 2×2 complex Q-matrix and an optical 
element is represented by a 4×4 real K-matrix. This formalism 
models pulse compressors and performs full spatio-temporal 
analysis. Additionally, this formalism allows for uncertainty 
and sensitivity analyses of the compressors/stretchers. While 
being simple to implement numerically, this method is 
computationally much faster than the other equivalent 
approaches, such as use of Wigner matrices and Wigner 
functions.  
 

I.   INTRODUCTION 
 

Pulse compressors are essential in all ultrashort-pulse laser 
labs. All regenerative amplifiers that use chirped-pulse 
amplification are reliant on pulse stretchers/compressors 
before/after the amplification process. Additionally, there are 
many applications that require the shortest duration of the 
pulse, such as multi-photon imaging, micro-machining and 
optical parametric amplification. This has motivated the use of 
a new class of extra-cavity pulse compressors, which can add 
tunable amounts of group-delay dispersion and thus provide 
control on the pulse width in an experiment[1, 2].  
The stretching and compression of a pulse in a pulse 
compressor is brought about by introducing angular dispersion 
by using a dispersive device such as a grating, prism, or grism. 
Along with the angular dispersion, several other spatio-
temporal distortions are introduced, which subsequently 
cancel inside the pulse compressor. Ideally, the net effect is 
only a stretched/compressed pulse in the output. Therefore 
modeling of pulse compressors/stretchers is an important task 
to determine the degree to which the pulse becomes distorted 
by the stretcher/compressor.  
Most methods model only the temporal properties of the 
pulse. Neglecting the full spatio-temporal properties of a pulse 
can lead to an incorrect compressor design and an incomplete 
analysis of a pulse compressor. Therefore, these methods have 
serious limitations.   
In our simulations, it is possible, and even easy, to model a 
pulse stretcher/compressor accurately and study the spatio-
temporal distortions introduced by it due to minor 
misalignments. We also studied the evolution of spatio-
temporal distortions on propagation, and they were found to 
worsen on propagation; distorting the pulse even more and 
thus rendering it useless for almost any application.  
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II.   K-MATRIX AND BEAM INVERSION 
 

A general Kostenbauder matrix can represent all the essential 
optical elements, such as lenses, gratings, prisms, mirrors, 
medium interfaces, and composite elements, such as a grism, 
up to the first order. A matrix representing each of these 
devices can be constructed from the device parameters such as 
grating line density, apex angle of the prism, and refractive 
index of the material used, etc. The matrix for a series of 
optical elements is given by the matrix product of the 
individual K-matrices in the same order in which the elements 
are encountered by the pulse. In a pulse compressor, the 
angular dispersion introduced in the first pass through the 
dispersive element is removed by placing an identical and 
inverted dispersive element after it or by inverting the beam 
before the second pass. The latter is the case when a corner 
cube or a roof mirror is used to achieve inversion.  
A general Kostenbauder matrix[3] and the effect of beam 
inversion on it, are shown in Eq.1. Each element of the general 
K-matrix represents a different spatio-temporal effect. A and 
D are magnifications, F is the angular dispersion, C and G are 
effective focal length and pulse-front tilt, respectively. B 
denotes position vs. slope. I represents GDD.  E represents 
spatial chirp. And H represents time vs. angle.  
 
III.  PULSE PROPAGATION THROUGH A COMPRESSOR 

 
In this section, we describe the modeling of a single grating 
pulse compressor (described in reference 2) and the 
propagation of a Gaussian pulse through it. Using the matrices 
for the grating on each pass through the compressor after 
accounting for the beam inversion, the K-matrix for a grating 
compressor can be derived as shown in Eq.2. 
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A Gaussian pulse is used as the input and is described in terms 
of the elements of the complex Q-matrix (Eq. 3) as follows 
(Note: 1 1

21 12Q Q− −= − ) 
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The propagated Q-matrix represents the output pulse and is 
calculated using the elements of the K-matrix [3] for the 
compressor as shown below (Eq. 4).  
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Using the output Q-matrix, virtually all the properties of the 
output pulse and the pulse compressor/stretcher can be 
studied. The Q-matrix in x-t domain can be simply 
transformed to x-ω, k-ω and k-t domains using analytical 
relations derived in [4], where ‘k’ is the transverse wave 
vector and ‘ω’ is the angular frequency.  
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Fig. 1. Output of a misaligned compressor after propagation. Colors 
correspond to the constituent wavelengths of the pulse. 
 
Thus all of the spatio-temporal intensity (and phase) 
distortions introduced by any first-order device can be 
calculated using this method. The results obtained from these 
simulations for the spatio-temporal distortions and the group-
delay dispersion introduced by a single grating pulse 
compressor, were found in agreement with the experimental 
measurements and other simulations. The effects of angular 

misalignment and grating-separation mismatch in the 
conventional grating compressor (which uses two or four 
gratings) were also studied using this method. A transform-
limited pulse of 100 fs width, centered at 800nm, was 
propagated through a conventional four-grating pulse 
compressor. In the simulation, the gratings were angularly 
misaligned by 2 degrees and the grating separation between 
the first and the second grating pair was offset by 1cm. This 
causes a large spatial chirp, pulse-front tilt, and angular 
dispersion in the output pulse. And these distortions become 
more severe after propagation by 10 meters as shown in Fig. 1.  
 

IV.  CONCLUSION 
 

On propagation of the pulse, only the parameters of the 
Gaussian beam are changed, so it is possible to get very high 
resolution in the output without having over-sized arrays for 
space and time variables. Use of Wigner functions and Wigner 
matrices[5] can also, potentially, model the spatio-temporal 
characteristics of pulse compressors. The K-matrices can be 
transformed to Wigner matrices through a simple linear 
transformation. Therefore, the two methods are completely 
equivalent. However, using Wigner functions involves storing 
four dimensional Wigner functions, computing Fourier 
transforms and evaluating various marginals. This has an 
extremely high memory requirement and makes this method 
extremely difficult to use. The uncertainty analysis in our 
simulations is easy to implement. The input can obey some 
probability distribution, which leads to a characteristic 
variation in the output. For example, it can be shown that 
vibrations in chirped pulse amplification cause the output 
pulse width to display an L-shaped statistics (as both positive 
and negative separation mismatch lead to a longer pulse). 
Using these simulations we have also modeled prism- and 
grism-based pulse compressors and stretchers. 
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