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Abstract—Ultrashort pulses contain only a few optical cycles
and exhibit broad spectra. Their carrier frequency is therefore
not well defined and their description in terms of the standard
slowly varying envelope approximation (SVEA) becomes ques-
tionable. Existing modeling approaches can be divided in two
classes, namely generalized envelope equations, that stem from
the nonlinear Schrödinger equation (NSE), and non-envelope
equations which treat the field directly. Based on fundamental
physical rules we will present an approach that effectively
interpolates between these classes and provides a suitable setting
for accurate and highly efficient numerical treatment of pulse
propagation.

I. ENVELOPE MODELS

The traditional approach to the description of few-cycle
optical pulses is the extension of the well-established theory of
envelope equations. These models are related to the nonlinear
Schrödinger equation (NSE) for the electric field envelope and
several generalizations of it [1], e..g.,

i∂zψ +
Mmax∑
m=2

βm
m!

(i∂τ )mψ + γ|ψ|2ψ = 0. (1)

After the envelope ψ(z, τ) is calculated, the electric field can
be obtained from the relation

E(z, t) =
1
2
ψ(z, t− β1z)ei(β0z−ω0t) + c.c., (2)

where τ = t− β1z is the retarded time.
However, the NSE, as well as its generalizations, and the

very definition of the envelope (2) are based on truncated
Taylor expansions of the propagation constant β(ω) around
some reference frequency ω0

β(ω0 + Ω) =
∞∑
m=0

βm
m!

Ωm. (3)

The principal problem with the Taylor expansion is that β(ω)
may posses resonances, i.e., singularities for some complex
values of ω, as opposed by all truncations of Eq. (3). In
other words, any Taylor expansion starts to diverge when |Ω|
approaches the convergence radius, and this divergence cannot
be suppressed by the mechanical increase of the expansion
order. This general phenomenon is illustrated in Fig. 1 for a
refraction index generated by a bi-Lorentzian model for ε(ω)
for fluoride glass.

In particular, the Taylor expansion based generalized NSE
can become invalid for ultrashort few-cycle optical pulses,
whenever the pulse spectrum widens up too much. The

problem becomes especially evident after consideration of the
asymptotic behavior of β(ω), i.e., β(ω) → ω/c for ω → ∞,
as opposed by behavior of the polynomial approximations.
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Fig. 1. Refraction index of fluoride glass (fat black line) and truncations
of the Taylor expansion (color lines) of the order 2 (like in NSE), 4 and 8.
Increase of the approximation order cannot resolve the divergence.

Another difficulty is related to the derivation of Eq. (1).
Typically one has to assume that the evolution of the envelope
ψ(z, τ) is slow as compared to exp i(β0z − ω0t) factor in
Eq. (2). An example is given in Fig. 2, where it is difficult
to decide whether the envelope approximation is valid or not
already after 10 ps of propagation time.

Fig. 2. Top: electric field (left) and spectrum (right) of the initial pulse.
Bottom: the same after 10 ps propagation in a bulk Kerr medium with the
refraction index shown in Fig. 1. The nonlinear susceptibility parameter χ(3)

is used to normalize the fields.
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II. SHORT PULSE EQUATIONS

The alternative approach is to treat the electric field directly,
guiding into the class of short-pulse equations (SPE) [2]–
[4]. Typically such models assume a reasonably simplified
model for the medium dispersion and an instantaneous cubic
nonlinearity. As an example, the dispersion relation with two
fit parameters ε(ω) = ε̄(1−µ2/ω2) for the refractive index in
the transparency window (see Fig. 3) guides to the SPE for
the properly scaled electric field U(z, τ) [2], [3]:

∂zU +
∫ τ

−∞
U(z, τ ′)dτ ′ + U2∂τU = 0, (4)

where also exact soliton solutions have been found [5]. A
more general rational fit ε(ω) = ε̄

(
1− µ2/ω2 + ν2ω2

)
is

especially useful near the zero dispersion wavelength, where
interesting effects by the transition between anomalous and
normal dispersion are expected [6]. Here, the only possible
solitary solution is a solitary breather that exhibits some
intrinsic dynamics [3], [5], [7].
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Fig. 3. Material response dispersion of fluoride glass (fat grey line) and a
simple rational approximation to it (blue dashed line). For comparison also
Taylor expansion of 8th order (red dashed line) is shown [3].

III. RATIONAL APPROXIMATION

More generally, following the alternative approach, we
employ a rational fit for the material dispersion, e.g. [8]:

n(ω0 + Ω) ≈ p0 + p1Ω + · · ·+ pMΩM

1 + q1Ω + · · ·+ qNΩN
. (5)

A principle advantage of Eq. (5) over Eq. (3) is that it
accounts for complex singularities and approximates n(ω) in
a considerably larger frequency domain, c.f. Fig. 4.

Moreover, by choosing polynomials of the same power
M = N in the numerator and denominator of Eq. (5) one
additionally ensures that n(ω) remains bounded for ω → ∞,
as it physically has to be, and as it is opposed by unbounded
polynomial approximations. Even more, by proper locating
the poles in the complex frequency domain, one can ensure
causality, as a basic physical demand. Among other things, this
leads to a considerable reduction of the numerical stiffness
when computing solutions of the envelope equations. As a
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Fig. 4. Complex dispersion for the same material as in Fig. 1 (fat grey).
Red: Taylor expansion (11th order), blue: [5/5] Pade approximation [8].

consequence, the resulting propagation equations become non-
local in time which expresses the delayed medium response.
Structurally, the propagation equation becomes:

i∂zΨ + (ω0 + i∂t)
[

1
c

D̂nΨ + γ̃ D̂−1
n |Ψ|2Ψ

]
= 0 (6)

where the nonlocal operators D̂n, D̂−1
n are defined as convo-

lutions with the dispersion function (5).

IV. CONCLUSION

We use the Pade approximation indicated in Fig. 4 to
quantify the general dispersion operator in Eq. (6). The latter
model is similar to non-envelope equations as it can be derived
without the slowly-varying envelope approximation. On the
other hand, Eq. (6) possesses the relatively simple structure
of the generalized NSE and can be effectively addressed by
adaptation of the existing numerical solvers.
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