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Abstract—The light-matter interaction in planar nanostruc-
tures with applications in photovoltaic devices is investigated
by means of a microscopic quantum-kinetic theory based on
the non-equilibrium Green’s function formalism. The Dyson and
Keldysh equations for the Green’s functions of photons are solved
numerically. The result is used to couple the optical and electronic
degrees of freedom via respective self-energies. The numerical
approach for the solution of the optical problem is verified
against a standard transfer-matrix formalism and applied to the
fluorescent emission of colloidal quantum dots in microresonator
cavities and the generation of dark- and photocurrent in ultra-
thin-absorber solar cells.

I. INTRODUCTION

Many novel solar cell architectures aim at an increase of
the light absorption via a specific tayloring of the optical
modes of the absorber [1]. At the same time, microresonator
cavities can be used to enhance the optical rates of luminescent
and/or up-converter materials for spectral photon management
in third generation photovoltaic devices [2]. The treatment of
the optical problem of slab systems within the non-equilibrium
Green’s function formalism (NEGF) has been discussed in the
literature for several different applications, such as emission
enhancement in microcavity lasers [3], absorption-reflection
characteristics of a general non-equilibrium system [4] or
the photovoltaic response of a spatially homogeneous (bulk)
absorber in absence of recombination losses [5]. Here, the
approach is reformulated in a representation suitable for its
combination with the NEGF treatment of charge carrier pho-
togeneration, transport and recombination in semiconductor
nanostructures and bipolar thin-film devices as previously
developed for nanostructure-based solar cells [6].

II. APPROACH

In a layer structure with homogeneous transverse (‖) di-
mensions , the equations for the Green’s functions (GF) can
be simplified by using the Fourier transform of the latter with
respect to transverse coordinates, i.e.,

Dµν(r, r′, E) =
A

(2π)2

∫
d2q‖Dµν(q‖, z, z

′, E)eiq‖·(r‖−r′‖).

(1)

For each energy and transverse momentum vector, a separate
set of equations for the GF needs to be solved. In the case of
the retarded GF, the integral form of the Dyson equation for
the dyadic form reads (omitting the energy and momentum
arguments and assuming Einstein’s convention for summation
over repeated indices)

DRµν(z, z′) =DR0µν(z, z′) +

∫
dz1

∫
dz2DR0µα(z, z1)

×ΠR
αβ(z1, z2)DRβν(z2, z

′). (2)

Similarly, the kinetic equation for the correlation functions
becomes

D≶
µν(z, z′) =

∫
dz1

∫
dz2DRµα(z, z1)

[
Π

≶
0αβ(z1, z2)

+ Π
≶
αβ(z1, z2)

]
DAβν(z2, z

′), (3)

where the self-energy component Π
≶
0 related to the solution

of the homogeneous problem is given in terms of the GF D0

of the unperturbed system.
In the case of a one-dimensional dielectric perturbation

potential (i.e., a 1D photonic crystal), the unperturbed GF D0

can be defined on the basis of solutions for homogeneous free
space, which for unpolarized light are given by

D0µν(q, E) =
~2c20

2V ~ωq
δ‖µν(q)D0(q, E), (4)

where D0 is the scalar GF of non-interacting bosons and
δ‖(q) is the transverse delta function in reciprocal space. The
corresponding GF in slab representation are then obtained
from the explicit forms for the GF components of non-
interacting bosons in homogeneous systems (bulk) via inverse
Fourier transform with respect to qz . Due to the q-dependence
of δ‖, the free GF can be separated in isotropic and anisotropic
contributions,

D0µν = D(1)
0 δµν +D(2)

0µν . (5)

Further evaluation of the anisotropic term requires consid-
eration of the polarization components and the directional
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dependence of the mode occupation. For normal incidence
(q‖ = 0), the anisotropic part vanishes in D0. For a simple 1D
dielectric potential, the retarded photon self-energy reduces to
the diagonal term ΠR

µν(q‖ = 0, z, z′, E) = V (z)δµνδ(z − z′).
The corresponding integral equation for the scalar component
of the retarded photon is solved via numerical quadrature [7].

III. RESULTS

The general expression for the local density of photon states
in terms of the photon GF reads

N (z, E) =− C
π

∑
µ

∑
q‖

ImDRµµ(q‖, z, z, E), (6)

where the normalization constant C = 2E
(~c0)2 relates the bare

boson field to the quantized photon field. As a first consistency
check, it is verified that in the case of free field modes,
the spatially constant result N0(z, E) = (n30E

2)/(π2~3c30) is
obtained.

To verify the computation of the GF for an inhomogeneous
situation, the local DOS and spectral density of photons for
a 500 nm thick dielectric slab (n = 3) in air (n0 = 1) are
compared to the corresponding quantities as computed via a
standard transfer-matrix method (TMM). For the LDOS, the
NEGF expression (6) is compared to the sum of the absolute
value squared of the electric field for left and right incidence
in TMM. For the photon density, the quantity

nγ(q‖, z, E) =
C
2π

∑
µ

iD<µµ(q‖, z, z, E) (7)

with the correlation function resulting from the solution of
(3) under the assumption of an asymmetric mode occupa-
tion Nq = Ñδ(q‖)θ(qz) and vanishing polarization Π< is
compared to the absolute value of the electric field for left
incidence in TMM. The results are diplayed in Fig. 1 for the
full calculation domain of the GF.

In terms of the photon GF, the fully non-local electron-
photon scattering self-energies required for the description of
photogeneration and radiative recombination processes at the
nanoscale reads

Σ≶(k‖, z, z
′, E) ≈ i~µ0

( e
m0

)2 A
(2π)2

∫
d2q‖

∑
µν

pµ(z)pν(z′)

×
∫

dE′

2π~
G≶(k‖, z, z

′, E − E′)D≶
νµ(q‖, z, z

′, E′), (8)

where the p denote the momentum matrix elements and G
the charge carrier GF in a real space band basis. Using this
method in combination with the NEGF theory for fluorescent
emission of quantum dots developed in [8], the total emission
rate of a quantum dot located at a position z0 in a planar
resonant dielectric cavity can be obtained from

Rem(z0) =
A

(2π)2

∫
d2q‖

∑
µν

∫
dE

2π~
Π<
µν(E)D>νµ(q‖, z0, z0, E),

(9)

where the polarization Π< reflects the optical excitation of the
quantum dot.

Fig. 1. LDOS and spectral photon density as computed from the photon GF
for a dielectric layer (n = 3) in air and normal light incidence from the left.

IV. CONCLUSIONS

We presented a method for the computation of photon
Green’s functions suitable for integration in a comprehensive
quantum-kinetic theory of absorption and emission processes
in layer-based nanostructures with application in novel solar
cell devices.
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