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Abstract—We adopt a multidomain pseudospectral method to 
analyze lamellar gratings for general conical diffraction from 
TE and TM diffractions. The validity and usefulness of this 
approach are demonstrated through normal metallic lossy and 
highly conductive lossless gratings. The developed method 
provides excellent numerical stability and convergence over 
commonly used rigorous couple wave analysis (RCWA) when 
the nearly lossless metal is involved. In the case, RCWA suffers 
from instability problem, while our method still performs well. 

I. INTRODUCTION 
Over the past few years, the applications of highly 

conductive gratings have recently brought to light by the 
phenomenon of SPP-mediated extraordinary transmission. 
Therefore, there is a need for an accurate, efficient and stable 
method to investigate the diffraction and electromagnetic field 
profiles inside a highly conductive grating. Here, we introduce 
a numerical model to solve the conical diffraction of nearly 
lossless metallic gratings [1]. This method is based on applying 
a spectral accuracy at the Chebyshev collocation points to the 
spatial derivatives in Helmholtz equation, and then dividing the 
computational domain into nonoverlapping subdomains [2]. 
Finally the physical boundary conditions at the subdomain 
interfaces enforce the subdomains to a global system.  

II. FORMULATION 
The geometry with notations is shown in Fig. 1 and we 

divide the computational domain into nonoverlapping 
subdomains as sketched in Fig.2. Each subdomain would be 
continuous and smooth with refractive index profile n(x, y). 
Since diffraction problem is invariant in the y-direction and 
the tangential component would be retained, we make the 
onset for the total field in a single subdomain expressed as 
follows: 
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where β is the propagation constant. To satisfy the Helmholtz 
equation, the eigenvalue equations in terms of the Ex and Ey 
can be derived as follows: 
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To avoid Runge phenomenon and achieve uniform 
accuracy, we adopt the Chebyshev points instead of the 
classical uniform interpolation, and then Chebyshev grids are 
used to construct the differential matrices D. It is the 
derivative operator which achieves so called “spectral 
accuracy” in a single domain with a homogenous or smoothly 
varying dielectric constant.  Subdomains in the same 
horizontal plane in Fig. 2 are merged with the help of 
boundary conditions across the vertical and horizontal 
interfaces. The multidomain system can be described as 
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Fig. 1 Schema of a diffraction binary grating in a conical mounting. 

NUSOD 2013

MPD8



where Θ is the Helmholtz operator in the nonoverlaping 
subbdomains other than boundary points xm, xR and xL. BD and 
BN represent Dirichlet boundary condition (DBC) or Neumann 
boundary condition (NBC), respectively. Solving this 
eigenvalue problem of (3), we get the propagating constants 
and mode patterns in such a multidomain system. The total 
electric field in region s (s = 1, 2, 3) can be expanded in terms 
of normalized waves corresponding to different modes solved 
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III. NUMERICAL RESULTS 
The first example is the diffraction of a highly conductive 

grating with Λ= t = 500 nm, n = 10i, θ = 30 degree, and λ = 
632.8 nm. The numerical instability was pointed out in [3] 
when the groove width varies from 6 to 460 nm with 2 nm 
intervals. It is an acknowledged criterion for numerical 
stability with TM polarization for the rigorous couple wave 
analysis (RCWA) [4]. In Fig. 3, we present a conical case with 
azimuthal angle φ= 45 degree and the polarization is still kept 
in p-polarization. The red dash line is obtained from 
commercial tool and the blue line is from our MDPS method. 
There are many artifacts shown in the dash line because the 
inversion of the Toeplitz matrices generated by the Fourier 
coefficients of permittivity distribution. Even we increase 
orders and the spurious modes would not disappear. In the 
meanwhile, there is no instability observed in the blue line. 
This is the first time to our knowledge to simulate the conical 
diffraction when such highly conductive lossless metal is 
involved. In the Fig. 3 and Fig. 4, 161 orders are used in 
RCWA and 74 orders used in MDPS method. Fig. 4 shows the 

first minus diffraction efficiency as a function of θ and φ. he 
groove width is 200 nm and 110 grids are used. Again, there is 
no instability observed. In addition, the total power of 
diffraction waves in Fig. 3 and Fig. 4 is equal to the incident 
wave, which validates our results. 

IV. CONCLUSION 
We have developed a powerful multidomain 

psedudospectral technique to model the conical diffraction of 
highly conductive lamellar gratings. Simulation results are 
verified with the widely used RCWA. We not only verified the 
diffraction efficiencies with the planar diffraction case but also 
extended to the general conical cases. Both numerical stability 
and convergence are very good. The new method is stable for 
gratings with any materials and only reasonable grids are 
required to get convergent results. 
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Fig. 2 Cross section of a grating. We divide the computational domain into 6 
nonoverlapping subdomains. 

 
Fig. 3 Diffraction efficiencies as the function of the groove width for a 
highly conductive lossless grating with n=0+i10 in conical mounting φ=45 
degree. 

 

 
Fig. 4 R-1 as a function of θ and φ. 
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