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Abstract—We investigate the nonlinear dynamics of a
quantum-dot laser coupled to an electro-optic modulator using
the Lang-Kobayashi model. We determine the effect of the
detuning between the EOM and the QD laser and the influence
of the static phase shift on the QD laser dynamics. The electro-
optical modulator’s model is based on semiconductor Maxwell-
Bloch equations with voltage dependent loss rates.

I. INTRODUCTION

Self-organized quantum dot (QD) laser structures with
integrated electro-optic modulators (EOM) are attractive for
applications in optical communication systems since electro-
optic effects like the quantum-confined Stark effect (QCSE)
are particularly strong in QDs. In this work we focus on
the dynamics of an integrated device consisting of an EOM
adjacent to a QD laser an investigate the influence of the EOM
on the laser dynamics using a Lang-Kobayashi model [1] with
an instantaneous feedback term due to the small length of the
EOM.

II. MODEL
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Fig. 1. (a) Scheme of the QD laser with integrated EOM. QDs (light blue
pyramids) are surrounded by a QW. (b) Energy diagram of the QD-QW system
inside the EOM structure.

Fig. 1(a) shows the scheme of the QD laser with integrated
EOM. The QD laser’s output is injected into the EOM and
modulated due to the applied voltage U . Our EOM model
is based on the QD semiconductor optical amplifier model
described in [2], [3] but with different carrier capture and
escape rates since the EOM is modulated by a reverse voltage.
The EOM’s model consists of optical Bloch equations for the
quantum dot interband polarizations and electron- and hole
occupations. The dynamical equations describing the dynamics
inside the EOM consist of the QD interband polarizations
pm, describing the probability of an optical transition between
the respective electron and hole levels and the QD carrier

occupation probabilities ρEOMe/h,m of electrons (e) and holes (h)
and are given by the following equations

∂pm
∂t

= − i
(
∆ω0

m + ∆ωQCS(U)
)
pm (1)

+
Ω(U)

2i

(
ρEOMe,m + ρEOMh,m − 1

)
− pm
T2
,

∂ρEOMe/h,GS

∂t
= − Im [Ω(U)pGS

∗] + 2Rcape/h − 2Resce/h (2)

−
(

Γtune/h,GS + Γtherme/h,GS

)
ρEOMe/h,GS −Rsp,GS ,

∂ρEOMe/h,ES

∂t
= − Im [Ω(U)pES

∗] −Rcape/h +Resce/h (3)

−
(

Γtune/h,ES + Γtherme/h,ES

)
ρEOMe/h,ES −Rsp,ES .

The QD ground state (GS) and the first excited state
(ES) inside the EOM are discriminated by a level index m.
Scattering induced coherence loss for the QDs is accounted
for by a dephasing time T2. The EOM is modulated by
a reverse voltage U . Due to the QCSE a red shift of the
transition energy and a decrease of the oscillator strength
occur. ∆ω0

m = ωEOMm − ωL is the detuning between the
unbiased EOM transition ωEOMm and the injected light field
ωL. ∆ωQCS(U) denotes the additional frequency detuning due
to the QCSE as a function of the applied voltage U . The Rabi
frequency of the QD transitions with voltage dependent dipole
moment µ(U) enters as Ω(U) = µ(U)

h̄ E. Carrier transitions
between the QD’s GS and ES are given by Rcape,h and Resce,h .
Γtune/h and Γtherme/h are voltage dependent loss rates into the
quantum well (QW) due to tunneling and thermal excitation,
respectively. Losses due to spontaneous emission in the QDs
are given by Rsp,m. Fig. 1(b) shows the bandstructure of
the EOM material. The QD GS energy levels are adjusted to
∆Ee,G = 210meV below the QW band edge for electrons and
∆Eh,G = 50meV for holes. The ES electron energy levels
are ∆Ee,E = 146meV and hole levels ∆Eh,E = 44meV
below the band edge, respectively. The complex slowly varying
electric field amplitude E(t) is injected from the QD laser into
the EOM. Absorption and phase shift within the EOM are
given as the real and imaginary part of the complex amplitude
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gain [4]

g(ωL, t) =
iωLΓ

εbgε0

NQD

hQW
µ∗−µT2

2h̄
(4)[∑

m

(ρEOMe,m + ρEOMh,m − 1)
∆ωm(U)T2 + i

1 + (∆ωm(U)T2)2

]
.

Γ is the geometric confinement factor, εbg the background per-
mittivity, hQW the height of each QW layer and NQD the QD
areal density per QW layer. ∆ωm(U) = ∆ω0

m + ∆ωQCS(U)
denotes the total frequency detuning between the laser and
the EOM. Details can be found in [4]. The rate equations
modelling the electron and hole occupation probabilities in
the QDs, ρLe and ρLh , and the electron and hole densities in
the QW can be found in [5], [6]. The electric field inside the
QD laser is given as

∂E

∂t
=

1 + iα

2

[
2WZQDa (ρLe + ρLh − 1) − κ

]
E +Rsp

+
R

τin
K(U,E) exp [i (C(U,E) + C0)]E (5)

where R =
√

(1 −Rin)Rout with Rin and Rout being the
reflection coefficients between the QD laser and the EOM and
between the EOM and air, respectively. α is the linewidth
enhancement factor, ZQDa the total number of active QDs in
the QW, W the Einstein coefficient for coherent interaction,
κ the internal loss rate and τin the internal round-trip time.
The feedback strength K(U,E) and the phase shift C(U,E)
are calculated by Lambert-Beer’s law using Eq. (4):

K = exp(2τ · Re(−g)) (6)
C = 2τ · Im(g) (7)

C0 is a static phase shift given by the length of the EOM
and its refractive index. Since the delay time τ lies in the
time scale of the modulator dynamics, we checked whether the
time delay could be neglected. Our calculations show that it is
reasonable to use the instanteneous feedback term described
above in this limit.

III. COUPLED QD LASER DYNAMICS

Using the set of equations described above the dynamics
of a QD laser coupled to a modulated EOM is simulated
numerically. For this purpose the EOM operates with a digital
signal in a range of −8V ≤ U(t) ≤ −4V with a frequency
of ν = 10GHz. Since we want to explore the influence of
the detuning on the QD laser and thus allow for an additional
detuning ∆ω0

m between laser and unbiased EOM which does
not change with the voltage. Fig. 2(a) shows the turn-on
dynamics of the QD laser with feedback due to the EOM.
The electric field strength of the QD laser does not reach
a stationary value but oscillates with a small amplitude due
to the periodic modulation of the EOM. Fig. 2(b) shows the
minimum and maximum of these oscillations as a function
of the static phase shift C0 and for different values of the
detuning ∆ω0

GS . While the EOM operation is very sensitive
to changes of the detuning, the QD laser output shows only

small changes. The varying values of the electric field strength
are not related to changes in the absorption inside the EOM
but rather given by the phase shift C which is sensitive to
variations of the detuning. Fig. 2 shows that the modulation
of the EOM transfers to the QD laser, albeit in a rather small
variation compared to the steady state value of the electric
field. The amplitude of the variation of the QD laser output
can be controlled by the static phase shift C0.

 (a) Transient dynamics
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(b) Bifurcation diagram
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Fig. 2. (a) Turn-on dynamics of the QD laser, the inset shows the oscillations
around the stationary value. (b) The plot shows minimum and maximum of
the QD laser field strength depending on the static phase shift C0 for three
different values of the detuning ∆ω0

GS . The voltage applied to the EOM
changes between U1 = −4V and U2 = −8V. Parameters: ν = 10GHz,
T2 = 100fs, α = 0.9 and j = 2jth.

IV. CONCLUSION

Using a Maxwell-Bloch approach and the Lang-Kobayashi
model with instantenous feedback we investigated the coupled
dynamics of a QD laser and an EOM. While the QD laser is
sensitive to changes of the static phase shift C0, the detuning
between the QD laser and the EOM influences the QD laser
dynamics only slightly. Since a possible application are optical
communication systems, it is important to be able to control
the transient laser dynamics.
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