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Abstract—For Blakemore-type distribution functions F(η) =
1/(exp(−η)+γ) describing the carrier density in semiconduc-
tors a generalization of the classical Scharfetter-Gummel scheme
can be derived resulting in a nonlinear equation per edge to
calculate the edge current. This approach provides a good ap-
proximation of the carrier density in degenerate semiconductors
for values of the chemical potential η < 1.3kBT . We discuss an
extension of this approach based on a piecewise approximation
of the distribution function by functions of that type in order
improve the approximation for larger values of the chemical
potential.

I. INTRODUCTION

The state equation for charge carriers in semiconductors
has the form n = NcF(η). It describes the dependence
of the carrier density n on the chemical potential η by a
statistical distribution function F(η) and the band-edge density
of states Nc. Typical choices for the distribution function are
F(η) = exp η (Boltzmann approximation), F(η) = F1/2(η)
(Fermi-Dirac integral of order 1/2 describing degenerate semi-
conductors), or the Gauss-Fermi integral [1], which is used for
organic semiconductors [2].

The Scharfetter-Gummel scheme [3] is an established
method for the discretization of the drift-diffusion equations
describing the carrier transport in semiconductors. The result-
ing discretization of the fully coupled van Roosbroeck system
on boundary conforming Delaunay meshes guarantees the
following properties of the continuous problem, see [4], [5]:
bounded and positive steady states with the same bounds as in
the continuous case; uniqueness for small applied voltages; ex-
istence of a unique transient solution for the implicit Euler time
discretization; dissipativity and exponential decay of the free
energy along trajectories towards the unique thermodynamic
equilibrium. The stability of the discretization is independent
of the mesh size and the time step.

The classical Scharfetter-Gummel scheme exploits the spe-
cial properties of the Boltzmann statistics, namely the expo-
nential dependence on the chemical potential. Here we present
a generalization to strictly monotonous distribution functions.

II. CONTINUITY EQUATION FOR CARRIER DENSITY

The carrier density fulfills the continuity equation given by

∂n

∂t
− 1

q
∇ · Jn = 0, (1)

with the current expression

Jn = −qμnNcF(η)∇ϕn (2)

and the (non-dimensionalized) chemical potential

η =
q(ψ − ϕn) + Eref − Ec

kBT
, (3)

where q denotes the elementary charge, μn the mobility, ϕn

the quasi-Fermi potential, ψ the electrostatic potential, kB
Boltzmann’s constant, T the temperature, Eref a reference
energy for the quasi-Fermi potential, Ec the (constant) band-
edge energy.

III. GENERALIZED SCHARFETTER-GUMMEL APPROACH

In the current expression (2) the distribution function F(η)
is a rapidly varying coefficient. The Scharfetter-Gummel dis-
cretization was already originally understood as a constant
current approximation by solving the equation

d

dx

(
qμnNcF

(
η(ϕn, ψ)

)dϕn

dx

)
= 0 (4)

on the interval [xa, xb] with the boundary conditions ϕn(xa) =
ϕa and ϕn(xb) = ϕb. The first integration results in
−qμnNcF

(
η(ϕn, ψ)

)
dϕn

dx = jn = const.
Replacing the quasi-Fermi potential ϕn by the chemical

potential η via Eq. (3) and assuming a linear dependence of
the electrostatic potential ψ on x ∈ [xa, xb], the following
integral equation for the unknown current jn results:

∫ ηb

ηa

1
jn/j0
F(η) + δψ

dη = 1. (5)

Here, the dimensionless potential difference is defined by
δψ = (ψb − ψa)/UT , the thermal voltage by UT = kBT

q ,
and the reference current j0 = qμnNc

UT

xb−xa
. The bounds of

the integral are ηa = F−1(na/Nc), ηb = F−1(nb/Nc).

IV. BLAKEMORE TYPE APPROXIMATION

In [6] the solution of Eq. (5) has been investigated for the
special function FB(η) = 1/(exp(−η)+γ). As introduced by
Blakemore [7] this provides good approximation of the Fermi-
Dirac integral of order 1/2 for η < 1.3, see Fig. 1. This choice
of the distribution function leads to a fixed point equation for
the unknown dimensionless current j = jn/j0:

j = f(j, δψ) = B(δψ + γj)eηb −B(−(δψ + γj))eηa , (6)

where B(x) = x
ex−1 is the Bernoulli function. For γ = 0

the classical Scharfetter-Gummel expression is reproduced. A
comparison of both currents is depicted in Fig. 2.
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Fig. 1. Plot of distribution function F(η) = 1/(exp(−η)+γ) in dependence
on the dimensionless chemical potential η for different values of the parameter
γ. For γ = 0.27 a good approximation of the Fermi-Dirac integral of order
1/2 in the range η < 1.3 is provided.

V. EXTENSION TO LARGER ARGUMENTS

In order to improve the approximation (6) for larger argu-
ments we propose a piecewise approximation of F(η) on N
subintervals [ηi, ηi+1], i = 1, . . . , N , η0 = ηa, ηN+1 = ηb, by
Blakemore type functions

Fi(η) =
σi

exp(−η) + γi
, ηi ≤ η ≤ ηi+1, σi > 0, γi > 0. (7)

See Fig. 3 for an example with asymptotic branches for small
and large arguments.

This ansatz solves the integral equation for the current (5)
if the following equations for are fulfilled simultaneously

∫ ηi+1

ηi

1
j

Fi(η)
+ δψ

dη = ci for i = 1, . . . , N, (8)

N∑
i=0

ci = 1, ci > 0. (9)

This results in a system of N +1 coupled nonlinear equations
for the N weights ci and the determination of the current j.

VI. CONCLUSION

A generalization of the Scharfetter-Gummel scheme based
on a piecewise approximation by Blakemore type distribu-
tions functions has been presented. It is suitable for strictly
monotonous distribution functions. Hence, the scheme can be
applied to the Fermi-Dirac integral of order 1/2 for typical
ranges of the chemical potential occurring in high doping re-
gions or active zones in semiconductor lasers as well as for the
approximation of the distribution function F0(η), describing
carriers in quantum wells, and to the Gauss-Fermi integral
used in organic electronics. The solution of the local current
equations (8), (9) requires local modifications of the typical
algorithm based on solving linear systems inside Newton’s
method for the fully coupled van Roosbroeck system.
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Fig. 2. Comparison of currents for classical Scharfetter-Gummel scheme
(γ = 0) and the generalized one for the case F(η) = 1/(exp(−η) + γ)
with γ = 0.27 in dependence on the potential difference δψ for two choices
of fixed densities as given by the solution of Eq. (6), compare [6].
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Fig. 3. Plot of the relative error
(
Fi(η) − F1/2(η)

)
/F1/2(η) for the

approximation of the Fermi-Dirac integral of order 1/2 by piecewise functions
of the form Fi(η) = σi/(exp(−η)+γi) with σi > 0, γi > 0 in dependence
on the dimensionless chemical potential η. With 30 subintervals the relative
approximation error is below 1% for η < 12.
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