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Abstract—We perform a stability analysis of the Crank-

Nicolson based finite difference beam propagation algorithm for 

a medium with a complex refractive index distribution. We use 

typical waveguide parameters that correspond to an InGaAs-

AlGaAs epitaxy. The results show that the FD-BPM scheme is 

unstable when performing the back propagation. 

I. INTRODUCTION  

The beam propagation method (BPM) is used frequently in 
the design and modelling of semiconductor lasers (SL) [1]. 
When compared with SL models, which rely on the 
approximation that the laser operates in a single transverse 
mode, the BPM models provide insight into the intra-cavity 
laser mode evolution.  The time domain models although 
superior in many respects, are significantly less numerically 
efficient than the BPM based models.  

BPM based SL models are particularly well suited for the 
design and analysis of the high power laser diodes. These 
models were used for the design of broad area lasers, tapered 
lasers, tapered lasers with grating mirrors, external cavity 
tapered lasers, tapered lasers with patterned contacts, etc. [2, 3, 
4, 5]. 

Initially fast Fourier transform based BPM (FFT-BPM) 
algorithms were used in the laser models [1]. However, more 
recently finite difference BPM (FD-BPM) algorithms have 
replaced the FFT-BPM ones [3, 4, 5]. This is because FD-BPM 
algorithms allow for an efficient implementation of the wide 
angle schemes and are fairly straightforward to implement in a 
programming language.  

In this paper we study the stability of the FD-BPM in the 
context of the semiconductor laser modelling.  

II. THEORY 

BPM algorithms are based on the approximation of the 
wave equation by the one way wave equation, c.f. [6]: 
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In (1) r is the reference propagation constant, k is the 

wavenumber,  is the scalar potential while we assumed that 

the time dependence is: exp(jt). The square root operator in 
(1) can be approximated using the Taylor expansion, which 
results in the well-known paraxial scheme [6]: 
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More accurate approximation is obtained when a Padé 
expansion is applied. In the case of the Padé approximation in 
the sum form (1) yields [6]: 
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One can observe that both equations (2) and (3) can be 
written in a compact, generic form: 
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Numerical solution of (4) applying the Crank-Nicolson (C-
N) scheme yields [6]: 
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Introduction of finite difference approximations into (5) 
yields C-N version of the FD-BPM, which is one of the most 
often used FD-BPM algorithms. From (5) it follows that if all 
eigenvalues of (5) are within a unit circle the algorithm is 
stable. This is the case when the refractive index distribution is 
real. However, when the refractive index distribution has a 
nonzero imaginary part the stability of (5) is not obvious. In the 
next section we therefore study the properties of (5) for a 
typical semiconductor medium with gain.  



III. RESULTS 

For a homogenous medium the properties of (5) can be 
studied using the Gershgorin circle theorem. However, the 
refractive index distribution in a semiconductor laser is not 
homogenous. We therefore calculate the eigenvalues for a 
typical waveguiding laser structure and then obtain the 
eigenvalues of the operator P. For this purpose we introduce a 
standard 3 point finite difference approximation for the second 
derivative in M and calculate all the eigenvalues of M. Once 
the eigenvalues of M are known the eigenvalues of P can be 
obtained from the mapping (5). We consider a typical core-clad 
waveguiding structure that is obtained upon applying the 
effective index method, c.f. [2]. We take from [2] the 
modelling parameters that correspond to an InGaAs-AlGaAs 
semiconductor laser operating at 980 nm. The core and 
cladding effective index is respectively 3.31 and 3.008 while 

the waveguide width is 4 m. The confinement factor equals 
0.02.  

Figure 1 shows the dependence of the magnitude of the 
eigenvalues of P on the mode number for the paraxial and wide 
angle schemes. The modes were sorted in the ascending order 
so that the mode with the largest number corresponds to the 
mode with the largest value of the propagation constant (which 

is the fundamental waveguide mode). In this simulations z = 

0.1 m, x = 1 m while the reference propagation constant 
equals to the propagation constant of the fundamental mode, 
which was calculated consistently using the finite difference 
method with the assumed value of the transverse mesh size. 

The size of the numerical window equals 40 m. These results 
show that all eigenvalues of P are within the unit circle and the 

algorithm is hence stable. However, if z = - 0.1 m the 
situation changes (Fig.2). In this case only the fundamental 
mode propagation constant is mapped within the unit circle 
while the propagation constants of the other modes are mapped 
outside of the unit circle. Hence, the algorithm is not stable. 

 

Fig. 1. Dependence of the magnitude of the eigenvalues of P on the mode 

number for the paraxial and wide angle scheme,  x = 1 m while z = 0.1 

m.  

As a result of the algorithm instability the field cannot be back 

propagated using the C-N FD-BPM algorithm. This last point 

is illustrated in Figure 3, which shows an attempt to back 

propagate the fundamental mode in the studied waveguide 

semiconductor laser example using paraxial C-N FD-BPM 

within a 2D model [2]. Despite the fact that the structure is 

longitudinally invariant, higher order modes are excited by 

numerical round off errors and they dominate gradually. 

 

Fig. 2. Dependence of the magnitude of the eigenvalues of P on the mode 

number for the paraxial and wide angle scheme,  x = 1 m while z = - 0.1 

m.  

 

Fig. 3. Intensity distribution calculated by backpropagating the fundamental 

mode using C-N FD-BPM within 1600 m long waveguide,  x = 0.1 m 

while z = - 0.1 m.  
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