
1

Simultaneous prediction of two independent chaotic
time series using semiconductor ring lasers with

optical feedback
Romain Modeste Nguimdo, Guy Verschaffelt, Jan Danckaert, and Guy Van der Sande

Abstract—We demonstrate simultaneous prediction of two in-
dependent Santa-Fe time series using a single-longitudinal mode
semiconductor ring laser with optical feedback. Our results
indicate that a prediction with errors comparable to the state-of-
the-art can be achieved for each time series despite the two tasks
are computed simultaneously.

INSPIRED by the way that the brain processes the infor-
mation, computational approaches have been developed for

tasks such as pattern recognition, time series prediction and
classification [1], [2]. These approaches typically make use
of a large number of randomly connected nonlinear nodes.
With 102 − 103 nodes, such hard tasks have been solved with
acceptable errors. In a recently introduced approach, this large
number of nodes has been successulfully replaced by a single
nonlinear node with delay, yielding comparable performance
[3]–[7].

In this contribution, we attempt to mimic another ability of
the brain consisting in processing simultaneously several inde-
pendent tasks. We identify semiconductor ring lasers (SRLs)
as suitable devices for this purpose thanks to their capability
of lasing simultaneously in two directional modes. Thus, we
simultaneously predict the next sample of two independent
chaotic time series.

In terms of the mean-field slowly varying complex ampli-
tudes of the electric field associated with the two counter-
propagating modes Ecw and Eccw, and the carrier number N ,
the theoretical model of the SRL-based system used is :

Ėcw = κ (1 + iα) [GcwN − 1]Ecw − (kd + ikc)Eccw

+ ηcwFcw(t) +
√
Dcwξcw(t) + k1E1(t), (1)

Ėccw = κ (1 + iα) [GccwN − 1]Eccw − (kd + ikc)Ecw

+ ηccwFccw(t) +
√
Dccwξccw(t) + k2E2(t), (2)

Ṅ =γ
[
µ−N

(
1 + Gcw |Ecw|2 + Gccw |Eccw|2

)]
, (3)

where the parameters are the linewidth enhancement factor
α, renormalized bias current µ, field decay rate κ, carrier
inversion decay rate γ, feedback strengths ηcw and ηccw,
and the backscattering coefficients kd + ikc where kc and
kd are the conservative and the dissipative couplings, respec-
tively. The differential gain functions are given by Gcw =
1 − s |Ecw|2 − c |Eccw|2 and Gccw = 1 − s |Eccw|2 −
c |Ecw|2 where s and c account for the phenomenological
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Fig. 1. NMSE for two optical inputs considering SRL with double self-
feedback (black) and double cross-feedback (grey, red in color). The output is
computed as |Ecw|2 for task 1 and |Eccw|2 for task 2. The parameters are (a)
Θ = 20 ps and (b) Θ = 200 ps and N=100 leading to Tcw = Tccw = NΘ=2
ns and 20 ns, respectively. ηcw = 10 ns−1, ηccw = 10 ns−1.

self- and cross-saturations, respectively. Fcw(t) and Fccw(t)
are the feedback terms. For the cross-feedback configuration,
Fcw(t) = Eccw(t − Tccw)e−iω0Tccw and Fccw(t) = Ecw(t −
Tcw)e−iω0Tcw where ω0 is the solitary laser frequency, Tcw
and Tccw are delay times and ω0Tcw and ω0Tccw are the
constant feedback phases. For the self-feedback configuration,
Fcw(t) = Ecw(t − Tcw)e−iω0Tcw and Fccw(t) = Eccw(t −
Tccw)e−iω0Tccw . The fourth terms at the RHS of Eqs. (1)
and (2) represent the effect of spontaneous emission noise
coupled to the CW/CCW modes. It can be explicitly written
as Dcw,ccw = Dm(N + G0N0/κ) where Dm is the noise
strength. G0 is the gain parameter and N0 is the transparent
carrier density. ξi(t) (i = cw, ccw) are two independent
complex Gaussian white noises with zero mean and correlation
〈ξi(t)ξ∗j (t′)〉 = δij(t − t′). The last terms in Eqs. (1) and (2)
i.e E1(t) and E2(t) are the injected data representing different
tasks to be processed in the two modes (e.g CW for task 1
and CCW for task 2), k1,2 being the injection strengths. The
original data is first convoluted with a random mask before
being sent to the reservoir. The mask is generated such that
it is constant over the virtual node separation Θ and periodic
over one loop delay time [3], [5]. We assume data fed into the
reservoir via a Mach-Zehnder modulator (MZM). Considering
the convoluted data S1,2(t), E1,2(t) can be written as

E1,2(t) =
|E0|
2

{
1 + ei[S1,2(t)+Φ0]

}
ei∆ω1,2t (4)

where ∆ω1,2 is the detuning between Ecw,ccw and E1,2, |E0|
is the amplitude of the injection and Φ0 is the normalized bias
voltage of the MZM.

To investigate the computational ability of SRLs for parallel
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processing, we consider a Santa-Fe data set of 10000 points
(which is used as benchmark for prediction) in which the first
4000 points are used for task 1 while the last 4000 points
are simultaneously used for task 2, meaning that the 2000
intermediate points are not considered neither for task 1,
nor for task 2. By doing this, we ensure that the two tasks
are independent. In each case, the first 3000 (75%) points
are used for training of the readout and the remaining 1000
(25%) points are used for testing. The system performance is
evaluated using the Normalized Mean Square Error (NMSE)
which, for perfect prediction, is zero. We use practical pa-
rameters: α = 3.5, s = 0.005, c = 0.01, κ = 100 ns−1,
γ = 0.2 ns−1, ω0Tcw = ω0Tccw = 0, kd = 0.033 ns−1,
kc = 0.44 ns−1,Dcw = Dccw = 5× 10−6 ns−1, G0 = 10−12

m3s−1 and N0 = 1.4 × 1024 m−3, k1 = k2 = 10 ns−1,
N = 100 nodes, |E0| = 2 and Φ = 0. The discrete levels of the
mask for task 1 and task 2 are arbitrary set to (0, 0.25, 0.75, 1)
and (−1,−0.25, 0.25, 1), respectively and the Santa-Fe data
are rescaled so that 0 ≤ S1(t) ≤ π and −π/2 ≤ S2(t) ≤ π/2.
Other parameters are set in the figure captions.

Figure 1 shows the NMSE as a function of the pump current
µ for η = ηcw = ηccw = 10 ns−1 and Dcw = Dccw =
5 × 10−6 ns−1 considering a fast value of Θ (a) and relative
large value of Θ (b). These values lead to the overall loop
delay time of Tcw = Tccw = 2 ns and 20 ns, respectively.
In both cases, it is seen that, for both tasks, there is a range
of the pump current for which NMSE. 10%, meaning that
the system can simultaneously well predict the next sample
in each chaotic time series both for self-feedback (black) and
cross-feedback (grey, red in color) configurations.

We further evaluate the parallel prediction performance of
our system by displaying the NMSE for different values of
the feedback strengths considering Θ = 20 ps (Fig 2). We
first decrease the feedback strength to η = 5 ns−1, value
for which in the absence of the input data the reservoir
rest state is stable in the whole range of µ both for the
cross- and the self-feedback configurations. As a consequence,
NMSE. 10% is obtained for the two tasks in a broader range
of the pump current (•). However, for both configurations,
it should be noticed that a further decrease of η to 1 ns−1

rather worsens the performance. It is interesting to note that
in all cases, almost the same value of the NMSE is obtained
for the two tasks. Furthermore, although the two input data
are processed simultaneously, they yield similar low errors as
those typically obtained when a single input data is processed
[5]. This shows that, despite the two modes being coupled,
the quantity of information transfered from one mode to the
counter-propagating mode is not significant. Nonetheless, the
results for cross-feedback configuration are slightly worse due
to the fact that the two modes are coupled each other with
feedback and therefore higher amount of the information is
exchanged by the two modes.

We have investigated the parallel prediction abilities of
semiconductor ring lasers with optical feedback. Our results
have shown that although the two input data are processed
simultaneously, an error characterized by NMSE as small as
0.05 can be simultaneously obtained for the two tasks. At the
conference, we will also discuss the performance of the system
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Fig. 2. NMSE for SRL with (a) double self-feedback and (b) double cross-
feedback configurations for different feedback strengths η = ηcw = ηccw
considering Θ = 20 ps.

when different types of tasks are processed simultaneously.
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