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Abstract—We present a new implementation of the eigenmode 
expansion technique for modeling Kerr-nonlinear waveguide 
structures. The formulation uses numerically stable scattering 
matrices and a perturbation approach based on the rigorous 
coupled-mode theory. 
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I. INTRODUCTION 
Rigorous electromagnetic simulation is of fundamental 

importance in the analysis and design of new photonic devices. 
Among various computational techniques, linear waveguide 
structures can be effectively simulated by using the eigenmode 
expansion technique (EME) [1,2]. The approach is particularly 
advantageous for the structures composed of longitudinally 
uniform waveguides (“sections”). In principle, EME can deal 
with the structures of arbitrary length and readily provides 
device characteristics such as transmission, reflection or 
radiation loss. An extension of EME for Kerr-nonlinear 
structures has been already demonstrated [3]. The nonlinear 
technique uses spatial discretisation of nonlinear sections and 
an iterative procedure that requires a repeated calculation of 
eigenmodes. The aim of this work is to present an alternative 
technique [4], labeled as NL-EME, which solves the modal 
propagation in the nonlinear sections by using a perturbation 
approach based on the rigorous coupled-mode theory. In this 
way, the recalculation of eigenmodes is avoided and thus one 
of the main advantages of EME maintained.  

II. FORMULATION 
A nonlinear structure, such as in Fig. 1, is described with 

the dielectric function 
2

00 Eγεεεε +≡Δ+= , where 
),,(0 zyxε  is the linear dielectric function, ),,( zyxγ  is the 

constant related to the Kerr-nonlinear response and ),,( zyxE  
is the electric field. The structure is divided into the 
longitudinally uniform sections, i.e., inside of any section, 0ε  
and γ  are functions of ),( yx  only and the field is expanded in 
terms of the linear eigenmodes as [1,2] 
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Here, ),,( zyxH  is the magnetic field, ⊥  denotes the 
transverse field components, mβ  is the propagation constant of 
the m-th eigenmode, ),( yxem  and ),( yxhm  are the 
corresponding electric and magnetic modal field profiles, 
respectively, and )(zfm  and )(zbm  are the amplitudes of the 
forward and backward propagating eigenmodes, respectively. 
The eigenmodes are normalized as in [4].  

 

Fig. 1. Nonlinear waveguide cavity (marked with NL) with the distributed 
Bragg grating reflectors (DBR). The waveguide width is μm .50=w . The 
cavity has the length cavL  and is surrounded by the two identical DBR 
sections with the period μm .450=a  and depth of the teeth  μm .20=d . The 
refractive indices of the substrate, the waveguide core, and the superstrate are 

44.11 =n , 98.12 =n  and 13 =n , respectively. Each DBR section contains 32 
periods and provides Bragg reflection at the operating wavelength 

μm 1.55=λ . 

For linear structures ( 0=γ ), the technique follows the 
formulation which employs the scattering matrices (S-matrices) 
[2]; the formalism is essential to prevent numerical instabilities 
that are related to propagation of evanescent modes.  

For nonlinear structures, we consider 0≠Δε  as a small 
perturbation of 0ε  and use the rigorous coupled-mode theory. 
The procedure leads to the following nonlinear system of 
coupled differential equations for the amplitudes mf  and mb :  
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where the coupling coefficients )(±
mnK are given by 
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 Solution of the coupled system (1)-(5) is straightforward for 
the structures in which propagation of backward modes can be 
neglected; this simplification was used in [5] for investigation 
of nonlinear plasmonic coupler. However, in the general case, 
it is necessary to use an iterative technique developed in [4]. In 
particular, at each iteration step, we obtain linear problem, 
which can be efficiently solved by using S-matrices; in this 
way, the nonlinear algorithm naturally extends the linear 
technique.  

III. NUMERICAL EXAMPLE 
To demonstrate the technique we present a simulation of a 

nonlinear waveguide cavity with the distributed Bragg grating 
reflectors (DBR), see Fig. 1. The structure is excited with the 
fundamental TE mode with the amplitude of the electric field 

.mE  The nonlinearity strength is characterized with a 
parameter ( )2

2
m 2/ nEγη = . The calculation was performed 

with 20 eigenmodes (in each section) and the discretisation 
step μm .010=Δz . 

Fig. 2(a) shows the modal transmissivity as a function of 
the cavity length cavL  for the various levels of the nonlinearity. 
As expected, the nonlinearity shifts the peak to the lower 
values of cavL  and a narrow bistable region is observed. The 
bistability is also demonstrated in Fig. 2(b), which presents a 
nonlinear characteristic of the device. Clearly, the iterative 
procedure used in NL-EME can describe the bistable response 
and converges even in the case of discontinuities. 

The example also demonstrates a very attractive feature of 
the technique. Often, it is necessary to simulate complex 
structures with short nonlinear sections. In this case, S-matrices 
for linear sections (e.g., S-matrix describing whole DBR for the 
structure in Fig. 1) are calculated once and only the S-matrices 
describing the nonlinear sections must be iteratively 
recalculated. 

IV. CONCLUSION 
We presented a new implementation of the eigenmode 

expansion technique for modeling Kerr-nonlinear waveguide 
structures. The technique combines perturbation approach 
based on the rigorous coupled-mode theory and numerically 
stable scattering matrices. The paper will introduce the model 
and theoretical formulation of NL-EME. Then we will present 
numerical results for typical structures that can be simulated 
and compare NL-EME with other established techniques. 

 

 

Fig. 2. (a) Modal transmissivity T  vs. the cavity length cavL  for various 
values of the nonlinearity strength η  shown in the box. (b) Modal 
transmissivity T  vs. the nonlinearity strength η  for the cavity length 

μm 1.022cav =L . The other structure parameters are as in Fig 1. 
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