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Abstract—An electrical equivalent circuit model of 
InGaAs/InP uni travelling carrier photodiode is presented. The 
model is suitable to be built on any electrical circuit simulator 
to perform design and optimize the device parameters. We 
have shown a novel technique of increasing bandwidth of the 
device by inserting a small shunt inductance in series with the 
load without sacrificing the device output photocurrent and 
linearity to a large extent. 
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I. INTRODUCTION  
ntegrated photonic transmitter based on uni travelling 
carrier photodiode (UTC-PD) with built-in amplifiers and 

antennas on the same guiding structure is attractive due to 
its high power, bandwidth and capability of generating  
millimeter wave (MMW) signal at 75 – 180 GHz range. 
Such approach facilitates radio over fiber based 
microcellular system promises higher spectrum utilization 
and high capacity. In order to optimize the system 
performance for the integrated UTC-PD with other photonic 
and radio frequency (RF) components, elegant physics 
based electrical circuit model of UTC-PD is needed.  
       Research efforts have mainly been made to optimize the 
device performance through various experiments involving 
UTC-PD [1]-[3]. Among the notable work A. Beling et. al. 
[1] developed a simplified circuit model of UTC-PD; 
however, transit-time effects of the carriers were not 
considered in the analysis. As a result bandwidth 
dependency on absorption layer width could not be studied. 
F. M. Kuo et. al. [2] presented an equivalent circuit model, 
however, the impacts of increased device bandwidth on inter 
modulation distortion and linearity has not been analyzed. 
M. Chtioui et. al. [3] reported use of thick absorption layer 
(1200 nm) to achieve high photocurrent at the cost of low 
bandwidth less than 30 GHz and moderate linearity. All 
these works show that there is a gap between achieving high 
photocurrent and high bandwidth due to inherent transit 
time limitation of the device. In this work, we focus on this 
aspect that how to increase the device bandwidth without 
sacrificing its output photocurrent and linearity to a large 
extent. In order to enhance the bandwidth we propose to 
connect a shunt inductance in series with the load which 
may be easily implemented in integrated circuit fabrication 
of the device. This is a well known technique of increasing 
bandwidth in electronic video circuit. We have investigated 
its effect with our comprehensive physics based UTC-PD 
equivalent circuit model. The model is derived from the 
simple integral rate equation [4] involving electron and hole 
movement in UTC-PD. Internally generated self-induced 
field and dominant drift movement of photo generated 
carrier is considered in the model. The model sub-blocks are 

implemented by current controlled or voltage controlled 
sources whose gains are equivalent to the transfer function 
of different sub-structures of UTC-PD. The advantage of 
this model is that the physical parameters of the device can 
be controlled with the help of circuit elements. The 
frequency response obtained from this model is validated 
with the experimental results.  

II. THEORY AND MODELING 
Schematic of UTC-PD is shown in Fig. 1. If light 

(1550nm) is illuminated on a UTC-PD then the photo-
absorption takes place only in the p-type InGaAs layer. The 
confined photo-generated majority carrier hole relaxes 
without transport where as minority electrons diffuse 
through the p-type absorption layer and drift to the n-type 
InP collection layer. 

 
 

Fig. 1. Schematic of top illuminated UTC-PD 

A. Circuit  Modeling of UTC-PD 
The total frequency response of UTC-PD can be derived 

from the frequency response [4] under small signal short 
circuit condition is 

Jtot (߱) = ௐಲௐ  ቂ ௃ವ಴ଵା௝ఠఛಲ ቃ . ቂ1 െ ௝ఠఛೃ
1ା௝ఠఛೃ ቀ1െ ௞௃ವ಴ቁቃ+ 

        ௐ೎ௐ  ቂ ௃ವ಴ଵା௝ఠఛಲ ቃSinc (ఠఛ೎
2

ሻ exp (- ௝ఠఛ೎
2

)         (1) 

Equation (1) contains some constant and frequency 
dependent terms which are multiplicative or additive to each 
other. To develop an electrical circuit model of (1), each 
additive and multiplicative term are connected in series and 
parallel respectively. The negative sign can be realized by 
connecting the positive end of one sub-circuit with the 
negative end of the other sub-circuit block. A constant term 
as  ሾௐಲௐ ஽஼ሿܬ  is realized by placing a current controlled 

current source (CCCS) of gain ሾௐಲௐ  .஽஼ሿ as shown in Figܬ
2(a). The frequency dependent terms are realized by 
inductive or capacitive circuits. To derive the admittance 
term ଵଵା௝ఠఛಲ , a current to voltage converter is required. This 
term is realized by current controlled voltage source 
(CCVS) of unit gain followed by a series RL circuit as 
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shown in Fig. 2(b). Similarly, the t
implemented by a RC circuit replacing L 
The complete equivalent circuit model of U
by (1) is shown in Fig. 3(a). Electron-ho
due to uniform optical excitation is repres
source. The upper branch of the circ
represents absorption region where seri
represent the carrier transit time (߬஺) and
relaxation time ( ߬ோ ) of photo-generate
absorption layer. Lower branch represents 

    

Fig. 2. Circuit realization of different functional 

 
Fig. 3. (a) Equivalent circuit model of UTC PD and 

inductance LS for bandwidth enhancement 

       III.    RESULTS AND DISCUS

Circuit model of UTC-PD is implem
CIS OrCAD_10.5 environment. The devic
photonic-wireless transmitter the linearity
very important. Accurate estimation of 
products is obtained through transient anal
and its Fourier transform. Another import
high output photocurrent can be achieved 
thickness of the absorption layer; however
bandwidth of the device. In order to enhan
we propose connecting a shunt inductance
the load as shown in Fig. 3(b). In integrate
this additional inductance may be incorpo
short-end coplanar waveguide (CPW) stu
acts as impedance transformer [6] to 
antenna input impedance.  
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points in Fig. 4 are respectively for 
frequencies (f3dB) and output photocurrent 
circuit simulation of Fig. 3(a). The corresp
plot of f3dB and photocurrent is shown by 
blue circles respectively. Experimenta
bandwidth at 220 nm absorption layer w
matches with the simulation which is sh
When shunt inductance LS (= 10 pH) i
series with load as shown in Fig. 3(b
increases (shown by red circles) but pho
same (shown by black diamond points). Th
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Fig. 4. Photocurrent and f3dB frequenc
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Fig. 5. (a) Frequency response of UTC
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