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Abstract—We review recent achievements in theory of ultra-
short optical pulses propagating in nonlinear fibers. The following
problem is especially emphasized: what is the shortest duration
(the highest peak power) of an optical soliton and which physical
phenomenon is responsible for breakdown of too short pulses.
We argue that there is an universal mechanism that destroys
sub-cycle solitons even for the most favorable dispersion profile.

I. PROBLEM POSING

Extremely intense and extremely short optical pulses, in
particular, stable few-cycle optical solitons, are important for
many fundamental and applied aspects of modern nonlinear
optics [1]–[3]. Such pulses have special properties and require
special tools for their mathematical description. To a large
extent pulse properties are captured by a properly general-
ized nonlinear Schrödinger equation, the latter can yield an
appropriate complex field envelope even on a single cycle
level [4]–[6]. On the other hand, one can describe an ultrashort
pulse in terms of a more special short-pulse-equation. Several
non-envelope short-pulse-equations were developed recently to
deal with the special regimes of pulse propagation [7]–[17].
In this contribution we review recent progress in this quickly
developing field.

A problem of special interest is the following question:
what is the shortest possible soliton duration? Or, in other
words, what is the largest possible peak power that is still
compatible with the stable regime of pulse propagation? We
address this problem by analyzing different equations for
short pulses. Solitary waves appear as continuous families
of solutions. As pulse duration decreases, the shape of the
soliton becomes more and more steep and finally approaches
the shortest shape with a cusp point at the top. Such behavior
was observed for several short-pulse-equations with different
origins. We argue that this is an universal feature.

To check our assumptions we analyzed the problem of
the shortest soliton directly on the field level using a proper
reformulation of Maxwell equations with the cubic nonlinear
term and arbitrary dispersion. The tendency to cusp formation
was observed also in this general case. As opposed to idealized
short-pulse-equations, the soliton can be destroyed before it
achieves the shortest possible duration. This happens when

significant part of the soliton spectrum belongs to the normal
dispersion domain. In such a case the soliton is destroyed by
the higher-order dispersion effect, usually due to the so-called
Cherenkov radiation [18].

II. METHODS

Solitary solutions of different short-pulse-equations often
appear as homoclinic trajectories of a reduced dynamical
system with a simple interpretation: we deal with “energy
conservation” in an imaginary mechanical system

1

2
(φ′)2 + U(φ) = const.

Here φ and φ′ are the field in question and its derivative. The
effective potential U(φ) depends on the choose of the short-
pulse-equation and on additional parameters such as pulse
duration. As the latter decreases the potential evolves (Fig. 1a)
and demonstrates singular behavior. Namely, a harmless singu-
larity (Fig. 1a, green line) is finally replaced by a critical one
(brown line) that destroys the soliton. This phenomenon was
found both for several available short-pulse-equations [19]–
[21] and for the generalized NLSE [22]. The “very last” (i.e.,
the shortest) soliton (Fig. 1a, red effective potential) yields a
cusp shape.

Cusp existence was also confirmed in a general setting
by direct numerical solution of Maxwell equations for several
typical dispersion laws. We use a non-envelope bidirectional
nonlinear wave equation with the cubic nonlinearity and arbi-
trary dispersion. The complex formulation naturally separates
contributions of the first and the third harmonics, the latter is
neglected. The propagation equation reads [23]

∂2zE −
1

c2
∂2t

(
ε̂E + 3

4
χ(3)|E|2E

)
= 0, (1)

where

ε̂

(∑
ω

Eωe−iωt

)
=
∑
ω

ε(ω)Eωe−iωt,

and to a good approximation the dielectric function ε(ω) is
purely real in the fiber transparency region. The real-valued
electric field E(z, t) = Re[E(z, t)].
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Fig. 1. (a) Effective potentials calculated for different durations of the result-
ing optical soliton are shown. Green line: regular potential that yields a typical
ultrashort soliton. Red line: limiting case of the infinite potential wall. The
resulting soliton shows an unphysical cusp. The corresponding pulse duration
provides the limiting (the smallest possible) value of the temporal pulse width.
Brown line: too short durations lead to singularities, the soliton just does
not exist. [21] (b) The shortest soliton (red line) for the Drude dispersion
law, ε(ω) = 1 − ω2

p/ω
2, and the carrier frequency ω0 = 2ωp. There is

a pronounced tendency to cusp formation. For comparison a corresponding
fundamental soliton is shown (black line). It clearly underestimates the peak
power (after [23]).

Solitary solutions of Eq. (1) have been found numerically
by successive iterations. First, we analyzed the Drude disper-
sion law. The tendency to cusp formation was clearly observed
(Fig. 1b, red line), the exact shortest soliton significantly differs
from the standard fundamental soliton (Fig. 1b, black line).
Second, we analyzed solitary solutions for several dispersion
laws of real single-mode fibers. Again, we observed a clear
tendency to cusp formation in the space-time domain. How-
ever, the cusp mechanism competes now with the Cherenkov
radiation, the latter may destroy the soliton more quickly than
the former.

III. CONCLUSIONS

There are several mechanisms that destroy too short optical
solitons. Most often this is due to influence of the normal
dispersion domain and Cherenkov radiation. However, sub-
cycle solitons were never observed even for the most optimal
dispersion profiles. In the absence of Cherenkov radiation
another mechanism comes into play. Namely, an unphysical
cusp appears at the top of the pulse envelope and the solitary
solution is destroyed. This happens at a critical duration of
approximately one and half carrier periods.
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