
Quantum Waveguides Discontinuities Analysis 
 

Afaf M. A. Saeed, and S. S. A. Obayya, Senior Member, IEEE 
Center for Photonics and Smart Material, Zewail City of Science and Technology, Giza, Egypt 

Email: sobayya@zewailcity.edu.eg 
 
 Abstract –A finite-element bidirectional beam propagation 
method based on Blocked Schur (BS-FE-BiBPM) is presented for 
the solution of quantum waveguides discontinuities. By using BS-
FE-BiBPM, scattering properties of electron waveguide 
discontinuities could be accurately calculated based on the 1-D 
time-independent Schrödinger equation avoiding the use of 
modal solution stage without affecting the accuracy of the results. 
As will be shown through the analysis of a quantum resonant 
cavity, a quantum directional coupler, and a quantum waveguide 
transistor, the suggested BS-FE-BiBPM is very accurate, 
versatile, efficient, fast and stable. 
 

I.  INTRODUCTION 

 Many research efforts have been paid to take advantage of 
wave nature of electrons to investigate high-density low-
power high-speed nanoscale systems. One of challenges is the 
communications between the nanoscale components in the 
system, such as transistors [1], nanosensors, antennas [2], 
tunneling structures, and nanowires or quantum waveguides.  
In order to develop quantum interference between devices, it 
is vital to investigate the scattering properties of electron 
waveguide discontinuities. Several analysis methods have 
been proposed in the literature to simulate these devices which 
can be classified into time- [3]-[5] and frequency-domain 
techniques [6],[7].  

Time-domain techniques, which could introduce the high 
speed response of recent quantum interference devices, suffer 
from being very expensive in terms of computational 
resources since very large memory and simulation running 
time are required. On the other hand, the accuracy of the 
frequency-domain techniques based on the mode-matching 
method (MMM) [7] depends highly on the number of guided 
and radiation modes. Furthermore, many difficulties arise in 
dealing with radiation modes which should be included to 
conserve the power balance condition at interfaces. Other 
frequency-domain techniques based on 2-D finite-element 
method (FEM) [6] rely on dividing the whole computational 
region into 2-D elements. Of course, solving 2-D problem 
with fine resolution puts an addition of computational effort. 

In this paper, we introduce, for the first time to the best of 
our knowledge, the use of BiBPM [8] for the solution of 
quantum waveguides discontinuities based on the 1-D time-
independent Schrödinger equation. It is well known that the 
electrons in the heterostructure devices start behaving more 
like waves than particles so that the transport of electrons 
through the nanoscale structure is similar to the propagation of 
electromagnetic waves in dielectric. On the other hand, 
BiBPMs are widely used in the study of guided-wave optics 
owing to its numerical speed, simplicity and efficiency. 
Moreover, the proposed BS-FE-BiBPM is relying on the 
Blocked Schur algorithm [9] which could accurately compute 

the square root operators of the characteristic matrices at the 
discontinuity section in a very stable way with reducing the 
execution time. Therefore, the use of BS-FE-BiBPM for 
quantum waveguides discontinuities will be considered as a 
very efficient method, as will be shown through the results 
section. 

II. ANALYSIS 

       Under the effective-mass approximation, the 1-D time-
independent Schrödinger equation is given by 
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where ψ is electron wave function, E is the electron's total 

energy, U is the potential energy, *m is the effective mass, 
β is the longitudinal propagation constant, and is the 
reduced Plank constant. A characteristic matrix ][A could be 
produced by using the standard Galerkin’s finite element 
procedure as optical waveguide analysis [10]. Then, the fast 
and noniterative Blocked Schur algorithm [9] has been applied 
to compute the square root of the characteristic matrix ][A . 
Then, the stable and noniterative BiBPM based on the 
scattering operators [8] has been applied. 
 

III. NUMERICAL RESULTS 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) Quantum resonant 
cavity; (b) Transmission and 
total probabilities. 

Fig. 2. (a) Quantum field effect 
directional coupler (QFED) geometry; 
(b) Scattering probabilities. 
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A. Quantum resonant cavity 
To ensure the accuracy and stability of the proposed BS-

FE-BiBPM, a quantum resonant cavity [4] of Fig. 1(a) is 
simulated, where the electron's potential energy of the wire is  
assumed to be zero. The boundaries in y direction are 
considered as hard walls. The effective mass m* is normalized 
by the rest mass of electron m0 is taken as 0.067. 

For the fundamental mode of the wire, Fig. 1b shows the 
transmission probabilities T as a function of electron's total 
energy E0. Our results are in excellent agreement with those 
obtained through finite element time domain method  (FETD) 
[4]. However, it took less than 0.4 s to calculate the 
transmission probability with excellent observed stability 
represented by the total probability in Fig. 1(b). 

 
B. Quantum field effect directional coupler 

Next example considered is a Quantum field effect 
directional coupler (QFED), which consists of two parallel 
identical electron waveguides, separated by narrow barrier 
with finite coupling length l=100nm, as shown in Fig. 2(a). 
The electron's potential  energies of the wire and the barrier 
regions are assumed to be 0 and 10meV with hard walls 
considered as the boundary condition. The effective mass also 
normalized by the rest mass of electron is taken as 0.067. The 
same structure was studied in [6] with 2-D finite element  
method (FEM).  

Fig.  2(b) shows the transmission T and reflection R 
probabilities of the fundamental mode as a function of the 
electron's total energy E0. Our presented results exhibited 
excellent correspondence with the results simulated by FEM 
[6]. 

 
C. Quantum waveguide transistor 

Next, a quantum waveguide transistor is  simulated based 
on a GaAs-waveguide with the T-shaped geometry and hard 
walls considered as the boundary conditions in y direction, as 
shown in Fig. (3). The effective electron mass is m*=0.069m0 
corresponding to GaAs. The incident wave is the fundamental 
mode of the electron's total energy E0=29.9meV excited from 
left to propagate in z direction.  The same structure was 
studied in [5] using the 2-D time-dependent Schrödinger 
equation discretized with the Crank-Nicolson finite difference 
scheme (FDTD) without external potential (V=0). 

The main interest here is to ensure the validity of our 
proposed BS-FE-BiBPM to introduce the same switching 
performance(OFF/ON-states) of this quantum waveguide 
transistor reported in [5]. So, there is no need now to have a 
coupling to Poisson equation for the current simulation of the 
MOSFET-channels. The absolute values of the wave functions 
are calculated here based on the time-independent Schrödinger 
equation for two stub lengths (L) in order to control the current 
through the channel. First, for the stub length of 32nm, the 
incident mode is almost completely reflected as shown in Fig. 
4a representing the (OFF-state) of the transistor. Second, for 
the stub length of 42.5nm, Fig. 4(b) shows that the incident 
mode is almost completely transmitted to the output 
waveguide representing the (ON-state) of the transistor. 
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Fig. 4.  The wave function distributions at E0 = 2919meV for two stub 
lengths: (a) L1 = 32nm; (b) L2 = 4215nm. 

Fig. 3. Quantum waveguide transistor geometry.
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