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Abstract—We investigate the impact of amplitude-phase cou-
pling on the dynamics of a passively mode-locked laser subject to
optical feedback. This is done using a delay differential equation
model to calculate bifurcation diagrams in the plane of the
feedback parameters. We find an increased complexity in the
dynamics of the laser when the effective a-factors of the gain
and absorber sections are different. With non-zero o-factors,
quasiperiodic mode-locking can also be induced by resonant
feedback and the extent of complex dynamical regions in the
parameter plane increases.

I. INTRODUCTION

Passively mode-locked (ML) lasers are of great interest due
to their potential use as sources of high-frequency ultra-short
light pulses in a wide range of applications. This is due to
the relative ease of fabrication, as well as the high repetition
rates and narrow pulse widths that can be achieved. However,
due to the absence of an external reference clock, passively
ML lasers have a relatively large timing jitter. It has been
shown experimentally that optical feedback can reduce the
timing jitter [1], [2]. Theoretical studies have been carried
out to gain an understanding of the influence the optical
feedback has on the laser dynamics [3], [4]. However a detailed
study on the influence of the amplitude-phase coupling on
the ML laser subject to optical feedback was still lacking.
This is important, as the the amplitude-phase coupling greatly
influences the dynamics of the free running laser and thus
understanding this effect is crucial to predict stable dynamic
regimes and to explain experimentally results. We therefore
use the delay differential equation (DDE) model introduced in
[5], and extended to include optical feedback [3], to investigate
the effect of optical feedback on the dynamics of a passively
ML laser, focusing on the impact of amplitude-phase coupling
(a-factor).

II. MODEL

In Ref. [5] a DDE model describing a ring cavity, passively
ML laser was introduced. This model was later extended
to include optical feedback [3]. The set of three coupled
delay differential equations describing the passively ML laser
coupled to an external feedback cavity are
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TABLE 1. PARAMETER VALUES USED IN NUMERICAL SIMULATIONS.
symbol [ value H symbol [ value H symbol value
~ 2.5ps ! rs 25.0 T 25ps
g 1ns™t K 0.1 Trsro | 1.015T
Yq 75ns ! ag varied C 0
Jg 4.8ps~?! Qg varied l 1
Jq 2.5ps ™1

The dynamical variables are the slowly varying electric field
amplitude &£, the saturable gain G and the saturable loss Q.
The parameters in this equation are: the cold cavity roundtrip
time T'=v/L where L is the length of the ring cavity, the
external cavity roundtrip time (delay time) 7, the full-width
at half maximum < of the Lorentzian-shaped filter function
used to account for the finite width of the gain spectrum, the
roundtrip number [ dependent feedback strength K, the phase
C' of the fed back light, the unsaturated gain J, in the gain
section, the unsaturated absorption .J, in the saturable absorber
section, the carrier lifetimes in the gain and absorber sections
1/74 and 1/, the ratio of the saturation energies in the gain
and absorber sections 7, the non-resonant losses x and the
amplitude-phase coupling in the gain and absorber sections
ag and oy.

In the equations above, zero detuning between the fre-
quency of the maximum of the gain spectrum and the nearest
cavity mode has been assumed. In the following we also
restrict our study to small feedback strengths. This allows us
to neglect all feedback contributions from multiple external
cavity roundtrips. Table I lists the parameter values used in
the simulations.

III. RESULTS

Using the parameter values listed in Table I the solitary
laser exhibits fundamental ML. This is true for a wide range
of a-factors. Here we restrict oy and o to values between
zero and two, therefore focusing on nanostructured devices.

Important for the study of the dynamics of the ML laser
subject to optical feedback is the feedback resonance condi-
tion,

pT = q11sy, forp,g € N. &)

Here T7gy is the interspike interval time between pulses for
the solitary laser. When this condition is fulfilled and p = 1
feedback is resonant and there is only one pulse within the
cavity. Higher order resonances occur for larger integer values
of p. In the higher order resonance regime p pulses travel
within the laser cavity for p < 6. In fig. 1 bifurcation diagrams
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Fig. 1. Bifurcation diagrams as a function of the feedback strength K and
external delay 7 (in units of the interspike interval of the solitary laser with
ag = ag = 0, Trgy,0). Color code: 1-5 indicate the number of pulses in
the cavity, regions in white indicate quasiperiodic (Q P) ML. Parameters: as
in Table 1.

of the laser output are plotted as a function of the feedback
strength K and the feedback cavity delay time 7 which is in
units of the interspike interval of the solitary laser with oy =
ag = 0 (T7s1,0)- Regions in blue indicate fundamental ML,
white regions indicate quasiperiodic ML (Q P), the remaining
colored regions indicate ML with additional feedback induced
pulses. In subplot (a) with ay = a4 = 0, fundamental ML
is observed for resonant feedback. For low feedback strengths
higher order resonances occur. For larger feedback strengths
the width of the main resonance regions increase. This is due to
locking between the pulse traveling in the laser cavity and the
pulse traveling in the feedback cavity. In subplots (b) and (c) of
fig. 1, fundamental ML occurs at the main resonances, however
for small feedback strengths the extent of the main resonances
is reduced. The structure of the higher order resonance regions
for low K is more complex and the regions of quasiperiodic
ML are larger. For oy = o4 = 2 quasiperiodic ML is even
observed at the main resonance. Meaning that the pulse stream
is destabilized by resonant feedback.

To explore the multi-stability of solutions we vary the
initial conditions. In fig. 2 bifurcation diagrams are shown
as a function of 7 for K = 0.1 and K = 0.3. The points
were obtained by up-sweeping 7 (green), down-sweeping T
(red) and using the same initial conditions as used in fig.
1 (blue). For low K only small regions of bistability are
observed, however for larger K the system becomes bi- or
multi-stable. In the central region of subplot (d) the laser
exhibits quasiperiodic ML, here the system is very sensitive
to the initial condition, therefore we observe three different
solutions.
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Fig. 2. Bifurcation diagrams as a function of the external delay 7 (in units of
the interspike interval of the solitary laser with o,y = aq = 0, T7g7,0). Color
code: up sweep in 7 (green), down sweep in 7 (red), same initial conditions
(blue). Parameters: as in Table I.

IV. CONCLUSION

For non-zero amplitude-phase coupling the extent of funda-
mental ML in the plane of the feedback parameters is reduced
and even at the main resonances feedback can destabilize the
pulse stream. Complex dynamics occur even at low feedback
strengths. Where the system does not exhibit fundamental ML
it is more susceptible to noise fluctuations, which is important
for real semiconductor devices. For the purpose of timing jitter
reduction the feedback would have a detrimental effect in these
regions.
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