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Abstract—We consider a quasi-two-level travelling wave model
of an inhomogeneously broanened laser. We propose a new nu-
merical method to solve these equations, and perform numerical
simulations to study the effect of inhomogeneous broadening on
the properties of mode-locking regime.

I. INTRODUCTION

Passively mode-locked lasers are used for generation of
short optical pulses that find applications in the areas such
as high speed communications and medical diagnostics. In
particular, quantum dot (QD) and quantum dash mode locked
semiconductor lasers possess characteristics that are promising
for the use in the optical communications [1]. Such lasers
exhibit high inhomogeneous broadening of the gain medium
due to inhomogeneity of the ensemble of quantum dots in
respect to their size, shape and composition, which contributes
significantly to the pulse shaping process. In quantum-dot
lasers under the bias conditions the inhomogeneous broadening
width at half-maximum (from 21 meV to 50 meV) is larger
than homogeneous broadening width (19 meV) [2]. In this
work, we consider Maxwell-Bloch equations for the elecrical
field envelopes of the waves travelling backward and forward
coupled to the quasi-two-level equations for polarizations
and carrier densities of the quantum dot groups emitting at
different central frequencies through the integral over these
frequencies [3]. Similar model was previously used to describe
inhomogeneous broadening of gas lasers, where the authors
simplified the system by either introducing auxiliary macro-
scopic momentum variables [4], or discretizing the integral [3],
[5], [6]. We integrate the partial integro-differential equations
numerically with the help of an efficient spectral method based
on Hermite functions as the basis functions to study the effect
of the inhomogeneous broadening width on the properties of
mode-locked regime.

II. MODEL AND THE SPECTRAL METHOD

A. Quasi-two-level travelling wave model

We consider a travelling wave model for a Fabry-Perot
inhomogeneously broadened laser in non-dimensional form,
which is obtained from quasi-two-level Maxwell-Bloch equa-
tions under standard mean-field, effective-index, and slowly

varying envelope approximations [3]
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where E±(t, z) are envelopes of the electric field travelling
forward and backward, P±(ω, t, z) represents two-level elec-
tric polarization, N(ω, t, z) represents population difference,
β describes linear internal losses in the intracavity medium, g
is the differential gain/loss parameter, Γ is polarization decay
rate, γ is population difference relaxation rate, j0 describes
linear gain/absorption. Boundary conditions are given by
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with the reflectivities on the left and right facets κ1,2. The
normalized spectral distribution f(ω) most commonly takes
the form of the Gaussian distribution
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where σD is the width of inhomogeneous broadening at half-
maximum, ω0 is the detuning between the atomic line center
and frequency of the cavity mode.

B. Hermite functions

Next, we propose the numerical method to solve (1)-(3).
For that we will project the variables P±, N as the functions of
ω on the finite subset of the basis formed by Hermite functions

ψm(ω) = (m!2m
√
π)−1/2e−ω

2/2Hm(ω). (6)

Function Hm(ω) is a Hermite polynomial, which is defined
by the recursive formula

H0(ω) = 1, H1(ω) = 2ω,

Hm+1(ω) = 2ωHm(ω)− 2mHm−1(ω).
(7)

C. Finite-dimensional 1D+1 problem

We multiply (2)-(3) by ψ0, make a change of variables
ψ0P

±, ψ0N → P±, N and a coordinate change (ω −
ω0)/(

√
2σD) → ω, and make the projection of the variables

P±, N and of the equations (2)-(3) on the subset of Hermite
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Fig. 1. Bifurcation diagram obtained by changing the parameter ng for
σD = 0, 20, 50. Here Γg = Γq = 40, γg = 0.01, γq = 1, nq = −1.6.

functions ψ0, ..., ψM to obtain the following system of partial
differential equations

∂E±
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= P±0 , (8)
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E±(0, z) = E±0 , P
±
m(0, z) = P±0m, Nm(0, z) = N0m, (11)

where P±m , Nm are the moments of polarization and population
difference, P±M+1 ≡ P±−1 ≡ 0, and due to orthonormality of
Hermite functions n0m = j0δ0m for all m = 0..M , where
δij ≡ 0 for i 6= j is a Kronecker-delta function.

III. NUMERICAL RESULTS

We solve equations (8)-(10) for the two-section semi-
conductor laser with a gain and an absorber section using the
discretization scheme similar to the one reported in [7], [8].
Since the number of moments reaches up to M = 200 in our
simulations, we realize this scheme in parallel.

We see on Fig. 1 that without inhomogeneous broadening
(σD = 0) with the increase of injection current first the Q-
switching regime is stable and then fundamental ML regime
gains stability. With the increase of the width of inhomoge-
neous broadening (σD = 20, whereas Γg = Γq = 40) we
observe that Q-switching regime is supressed and ML regime is
stable for the considered range of injection current. Moreover,
by further increasing σD = 50 we see that the second peak
appears in the pulse profile. By examining the spectral profile
of the pulses for high σD (see Fig. 2,3) we see that the
appearance of the small peaks near the pulse corresponds to
the formation of the Lamb dip in the spectral profile.

IV. CONCLUSION

We have considered travelling wave model of an inhomo-
geneously broadened laser and proposed and realized efficient
numerical method for the parallel simulation. We have shown
that inhomogeneous broadening suppresses Q-switching and is
responsible for the formation of the Lamb dip in the spectral
profile of the pulse.
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Fig. 2. Pulse profiles for σD = 52, 56, 60.
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Fig. 3. Spectral profiles of the pulses for σD = 52, 56, 60.
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