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Abstract—We discuss an approach to the analysis of nonlinear
dynamics in multimode semiconductor lasers based on the use of
delay differential equations (DDEs) for the electric field envelope
and carrier density in nonlinear intracavity media. We consider
DDE models of a mode-locked semiconductor laser generating
short optical pulses and a multistripe laser array with external
feedback. We present the results of numerical simulations of
different dynamical regimes in these lasers and discuss asymp-
totic approaches for the stability analysis of different operation
regimes.

I. INTRODUCTION

Conventional methods to study the dynamics of multimode
semiconductor lasers are based either on the numerical simu-
lations of partial differential traveling wave equations or on
the analysis of large systems of coupled equations for the
amplitudes of individual modes. Here we discuss an alternative
approach to the analysis of the dynamics of multimode lasers
based on the use of delay differential equations (DDEs).
We show that this approach allows not only to perform a
comprehensive numerical bifurcation analysis of different laser
operation regimes, but also to obtain some analytical results.

Here we introduce two DDE models of multimode semi-
conductor lasers. The first model describes the generation of
short optical pulses in a passively mode-locked laser. This
model proposed in [1]–[3] can be considered as an extension of
the Haus master equation to the case of semiconductor lasers
with large gain and loss per cavity round trip. Later this model
was generalized to study mode-locking in quantum dot lasers
[4]. Furthermore, a modification of the DDE mode-locking
model was very recently adopted to describe a Fourier mode-
locking regime in a ring laser with tunable optical bandpass
filter [5].

The second model describes a multistripe laser array with
an external off-axis feedback, which was studied experimen-
tally in [6]. This model is based on a set of DDEs for
the electric field envelope, homogeneous component of the
carrier density, and the transverse carrier grating. Using the
DDE model of the multistripe laser array we study different
dynamical instabilities of the operation regime corresponding
to anti-phase synchronization of the neighboring stripes in the
array.

II. DDES FOR A PASSIVELY MODE-LOCKED

SEMICONDUCTOR LASER

A DDE model of a passively mode-locked semiconductor
laser was derived in [1]–[3] using the so-called lumped element

method and assuming unidirectional lasing in a ring cavity
with Lorentzian shape of the spectral filtering. This model
governing the time evolution of the electric field envelope A
at the entrance of the laser absorber section, saturable gain G,
and saturable loss Q, reads:

γ−1∂tA+A =
√
κe(1−iαg)G/2−(1−iαq)Q/2−iϕAT , (1)

∂tG = g0 − γgG− e−Q
(
eG − 1

)
|AT |

2 , (2)

∂tQ = q0 − γqQ − s
(
1− e−Q

)
|AT |

2
. (3)

Here AT = A(t − T ), T is the cavity round trip time, γ is
the spectral filtering bandwidth, s is the effective saturation
parameter, and κ is the linear attenuation factor per cavity
round trip. The parameters g0 (q0), γg (γq), and αg (αq)
describe linear gain (absorption), carrier relaxation rate, and
linewidth enchancement factor in the amplifying (absorbing)
section. The DDE model (1) - (3) can be considered as an
extension of the classical Haus model to the case of large
gain and loss per cavity round trip. A modification of the
DDE model was recently successfully applied to describe the
characteristic features of a Fourier domain mode-locked laser
observed experimentally [5].

III. DDE MODEL OF A MULTISTRIPE LASER ARRAY

Schematic representation of a multistripe laser array with
external off-axis feedback is shown in Fig. 1. Here, κ1 and
κ2 describe the reflectivity of the left laser facet and feedback
mirror, respectively, α is the angle of the tilt of the feedback
mirror, and L is the distance from the right laser facet to this
mirror. The distance L is assumed to be much larger than the
width w and the length l of the array, L ≫ w, l. The time
required for the light to travel from the array to the feedback
mirror and back is given by τ = 2L/c0, where c0 is the
velocity of light in vacuum.

When the tilt angle α of the external mirror is properly
adjusted, so that the adjacent stripes are syncronized anti-
phase, the array emits a double lobed far field pattern with
a pronounced output lobe at the angle α and a slightly
suppressed feedback lobe at the opposite angle −α. This
behavior was observed experimentally [6] and reproduced in
numerical simulations using a 2+1 dimensional traveling wave
model [7]. Using the approach similar to that discribed in
[1]–[3] we have derived the following DDE model of the
multistripe array shown in Fig. 1.

Γ
−1∂tA+A = (1− iαH)κ1κ2e

(1−iαH )GTHTAT , (4)

∂tG = G0 − γG− |A|2(eG − 1)(1 + κ2

1
eG). (5)
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Fig. 1. Schematic view of a multistripe laser array with off-axis feedback.

∂tH = H0 − γH − |A|2H{
1−iαH

2
eG[κ2

1(2e
G − 1) + 1]

+
1+iαH

2

eG−1

G (κ2

1
eG + 1)}. (6)

Here A(t) is the electric field amplitude, G(t) is the trans-
versely homogeneous component of the saturable gain, and
H(t) is the amplitude of the transverse carrier grating, H(t) =
eiφ(t)|H(t)|. The parameters H0 and G0 act as pump parame-
ters for the homogeneous component of the carrier density G
and the carrier grating H , respectively, and αH is the linewidth
enhancement factor. The subscript T denotes delayed argu-
ment, φT = φ(t− T ), HT = H(t− T ), and GT = G(t− T ).
The delay time is T = 2(L + l)/c0. In the derivation of (4)-
(6) we have assumed that the array operates sufficiently close
to the lasing threshold and/or the transverse grating in the
active medium is sufficiently weak [8]. However, despite the
above mentioned approximations, the results obtained with the
model (4)-(6) are in a good qualitative agreement with those
of numerical simulations with the 2+1 dimensional traveling
wave model [7].

Numerical analysis of the model equations (4)-(6) has been
performed using the routines for direct numerical integration
of DDEs and the software package DDE-Biftool [9]. Figure
2 illustrates some results of this analysis. In this figure two
branches of CW regimes, CW1 and CW2, correspond to two
different longitudinal modes of the multistripe laser array with
external feedback. With the increase of αH the solution CW1

looses and the solution CW2 gains stability via subcritical
Andronov-Hopf bifurcations giving rise to a branch of unstable
periodic solutions. Bistability between the two CW solutions is
observed within a certain range of the linewidth enhancement
factors. At sufficiently large αH the solution CW2 becomes
unstable again via a supercritical Andronov-Hopf bifurcation
leading to the appearance of stable periodic solution P1.

IV. CONCLUSION

We have discussed an approach to analyze the dynamics
of multimode semiconductor lasers based on the use of DDEs.
In particular a DDE mode-locking model has been proven a
useful tool for mathematical analysis of passively and hybrid
mode-locked monolithic semiconductor lasers, as well as some
other devices, such as frequency swept and Fourier domain
mode-locked lasers [5].

We have shown that characteristic features of the dynamics
of multistripe laser arrays with external off-axis feedback
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Fig. 2. Bifurcation diagram of Eqs. (4)-(6) obtained with help of DDE-Biftool
package. Linewidth enhancement factor αH is used as a bifurcation parameter.
Solid black line: stable CW solution. Dashed black line: unstable CW solution.
Solid gray line: stable periodic solution. Solid dashed line: unstable periodic
solution. H indicates an Andronov-Hopf bifurcation point. Parameter values
are: T = 2.5, γ = 0.065, Γ = 2/T , κ1 = 0.95, κ2 = 0.9, G0 = 0.07.

observed earlier in numerical simulations of the traveling wave
model [7] are well reproduced with the help of the reduced
DDE model. Bifurcation analysis of the DDE model indicates
that at sufficiently large values of the injection current and
the linewidth enhancement factor different instabilities of CW
regimes can develop in the system. In particular, an Andronov-
Hopf bifurcations are responsible for the destabilization of CW
regimes and appearance of single- and multimode pulsations.
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