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Abstract—Driven by applications in fields like organic semi-
conductors there is an increased interest in numerical simu-
lations based on drift-diffusion models with general statistical
distribution functions. It is important to keep the well known
qualitative properties of the Scharfetter-Gummel finite volume
scheme, like positivity of solutions, dissipativity and consistency
with thermodynamic equilibrium. A proper generalization to
general statistical distribution functions is a topic of current
research. The paper presents different state-of-the-art approaches
to solve this problem. Their issues and advantages are discussed,
and their practical performance is evaluated for real device
structures.

I. DRIFT-DIFFUSION EQUATIONS

The dependence of the carrier densities for electrons and
holes on the chemical potentials ηn and ηp are described by
a statistical distribution function F(η) and the conduction and
valence band density of states Nc and Nv with state-equations
of the form n = NcF(ηn) and p = NvF(ηp). Typical choices
of the distribution function are F(η) = exp η (Boltzmann
approximation) or F(η) = F1/2(η) (Fermi-Dirac integral of
order 1/2 describing degenerate semiconductors).

The drift-diffusion equations describe the carrier flow in
a semiconductor due to an self-consistent electrical field.
They are given by the coupled system consisting of Poisson’s
equation for the electrostatic potential ψ

−∇ · (ε∇ψ) = q(C + p− n) (1)

and continuity equations for the electron and hole densities
which in the stationary case are given by

−1

q
∇ · jn = −R, +

1

q
∇ · jp = −R, (2)

where q denotes the elementary charge, ε the electrical per-
mitivity, C the net doping profile and R(n, p) describes the
recombination. The electron and hole currents jn and jp are
defined by

jn = −qµnNcF(ηn)∇ϕn, jp = −qµpNvF(ηp)∇ϕp, (3)

where µn and µp denote the mobilities, ϕn and ϕp the quasi-
Fermi potentials of electrons and holes and ηn and ηp the
corresponding (non-dimensionalized) chemical potentials

ηn =
q(ψ − ϕn) + Eref − Ec

kBT
, ηp =

q(ϕp − ψ)− Eref + Ev
kBT

.

Here, kB denotes Boltzmann’s constant, T the temperature,
Eref a reference energy for the quasi-Fermi potentials and Ec
and Ev the conduction and valence band-edge energies.
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Fig. 1. Collocation points (black), simplices (grey lines) and control volumes
(filled) in two space dimensions. Note the right angle between the lines ~xK~xL

and ∂K ∩ ∂L, which allows to approximate the normal current through the
face boundary ∂K ∩ ∂L (green) by a finite difference expression along the
edge ~xK~xL (red).

II. FINITE VOLUME SPACE DISCRETIZATION

The Voronoı̈ box based finite volume method [1], known
also as “box method” [2] uses a simplicial grid in the simula-
tion domain Ω ⊂ Rd. The boundary conforming Delaunay
property [3] of the grid allows to obtain control volumes
surrounding each given collocation point ~xK by joining the
circumcenters of the simplices adjacent to it, see Fig. 1.

Let denote by ∂K the boundary of the control volume K,
and by |ξ| the measure of a geometrical object ξ. For each
control volume K, we integrate the continuity equation (2) and
apply the Gauss theorem to the integral of the flux divergence.
Without loss of generality, we restrict our considerations to the
electron transport equation.

0 =

∫
K

(−∇ · jn +R) d~x =

∫
∂K

jn · ~n+

∫
K

R d~x

=
∑

L neighbour of K

∫
∂K∩∂L

jn · ~nKLds+

∫
K

R d~x

≈
∑

L neighbour of K

|∂K ∩ ∂L|
|~xK − ~xL|

jn;KL + |K|R(nK , pK).

(4)

Here, nK , pK are the values of n and p at the collocation points
~xK , and jn,KL are approximations of the (scaled by the edge
length) normal currents through the interface ∂K∩∂L between
two neighbouring control volumes, see Fig. 1.

In the same way, one obtains for the Poisson equation∑
L neighbour of K

|∂K ∩ ∂L|
|~xK − ~xL|

EKL = |K|q(CK + pK − nK). (5)
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In a straightforward manner, the scaled electric field projection
EKL can be expressed by the finite difference expression

EKL = ε(ΨK −ΨL). (6)

III. SCHARFETTER-GUMMEL CURRENT EXPRESSIONS

The classical Scharfetter-Gummel scheme [4] approximates
the normal current across the interface jn,KL by

j = j0

[
B(−δψ)nK −B(ψ)nL

]
, (7)

where B(x) = x
exp(x)−1 is the Bernoulli function, j0 =

qµnUT , δψ = (ψK − ψL)/UT and UT = kBT
q . Assuming

the Boltzmann approximation F(η) = exp η, the scheme
has been derived from solving a two-point boundary value
problem resulting from a projection of the continuity equation
(neglecting recombination) along the discretization edge ~xK~xL
assuming constant current j = jn ·~nKL and constant electrical
field with boundary values n|~xK

= nK , n|~xL
= nL [4]. It is

important that it is consistent with the unique thermodynamic
equilibrium (jn = 0 for ϕn = const.).

For cases where the Boltzmann approximation is no longer
valid (high densities) there exist different ways to extend the
Scharfetter-Gummel scheme for the current approximation.

A. Averaging of inverse activity coefficients

Motivated by applications in electrochemical systems, in
[5] it has been proposed to reformulate the equations based on
the activities eη . This reformulation results in a Boltzmann-
like drift-diffusion expression for the activities scaled by the
inverse activity coefficient β:

jn = −qµnβ(η)Nce
η∇ϕn, β(η) =

F(η)

eη
. (8)

This structure can be kept in the discretization:

j = j0β̄KLNc

[
B(−δψ)eηK −B(δψ)eηL

]
. (9)

Here, ηK and ηL are the chemical potentials corresponding to
the densities nK and nL. It is consistent with thermodynamic
equilibrium for any average β̄KL ∈ [β(ηK), β(ηL)].

B. Averaging of diffusion enhancement

Keeping densities as basic variables, the drift-diffusion
expression for the current is modified by the diffusion enhance-
ment g:

jn = −qnµn
[
∇ψ − kBT

q
g
( n
Nc

)
∇n
]
, g(x) = x(F−1)′(x).

(10)
As g scales the diffusion coefficient, using an appropriate
average ḡKL = ḡKL(nK , nL) ∈ [g(nK), g(nL)] leads to the
Scharfetter-Gummel like expression

j = j0ḡKL

[
B
(
− δψ

ḡKL

)
nK −B

( ψ

ḡKL

)
nL

]
. (11)

However, in this case, consistency with thermodynamic equi-
librium can only be achieved for a special choice of the
averaging procedure [6].

C. Generalized Schafetter-Gummel scheme

The idea to solve a local two-point boundary value problem
in order to derive the current expressions in the finite vol-
ume scheme has been generalized to nonlinear drift-diffusion
problems in [7]. This idea has been carried out in [8] for
the Blakemore approximation F(η) = 1

exp(−η)+γ , which for
γ = 0.27 provides a good approximation of F1/2 upto η ≤ 1.3
[9]. This approach leads to a nonlinear equation for j:

j = j0Nc

(
B(δψ + γj)eηK −B(−(δψ + γj))eηL

)
. (12)

This equation has a unique solution [8], which can be obtained
in practice by a Newton method. It is possible to generalize this
ansatz to any strictly monotonous distribution functions [10].
The scheme is dissipative and consistent with thermodynamic
equilibrium. Based on a proper constant current approximation,
the scheme is expected to deliver approximations with high
accuracy already on rather coarse grids.

IV. OUTLOOK

The presented schemes have been verified numerically and
partially investigated analytically. To our knowledge up to now,
no comparative evaluations have been carried out for the fully
coupled system. Their application to real device structures is
still missing. This contribution attempts to perform a step in
this direction.
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