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Abstract—This work presents a theoretical a
transition in strain balanced SiGeSn/GeSn quan
photodetector. Eigen energies for Г valley c
heavy hole band and light hole band are obtai
consistent solution of coupled Schrödinger and P
by finite difference method. Absorption sp
transition of heavy hole and light hole ban
calculated after evaluating Eigen energies and w

I. INTRODUCTION 
Silicon and Germanium are the front line 
micro electronics integration circuits. But they
for active optoelctronic devices because o
bandgap nature [1]. However, a small en
between indirect valley and direct valley in G
has triggered the idea of Group IV d
semiconductor through bandgap engineering. 
proposed several approaches to modify the b
Germanium like heavy n-type doping, biaxial
Ge, incorporation of Sn into Ge etc. Substitut
Ge lattice to form the direct band gap semicon
alloy is the most promising route among all a
[2]. For modest Sn concentrations (~10%
expected to become the first viable group-IV
direct band gap, opening up new oppor
integration of opto- and micro electronics [2]
tensile strain in GeSn, the direct band gap ca
lower concentration of Sn (x=0.4-0.8) as com
GeSn [2]. Direct band gap can also be obtaine
compressive strain in Ge1-xSnx alloys for 
Compressive strain enables the defect free 
and also enables to achieve the amount of 
beyond its solid solubility limit of 1% [2].  
Accurate physics based modeling for the d
compressively strained GeSn alloy is required
electronic optical properties before their fab
present work, a theoretical analysis of direc
strain balanced SiGeSn/GeSn quantum 
photodetector (QWIP), where the well
compressively strained GeSn alloy, is p
balanced condition is required to reduce th
which reduces the misfit dislocation in QW [4
for Г valley conduction band (Г-CB), heavy 
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4]. Eigen energies 
hole (HH) band 

and light hole (LH) band are 
consistently both the Schrödinger a
proper boundary conditions. After
direct interband transition in the QW

II.         THEREOTICAL F

The device structure considered in
tensile strained SiGeSn barriers a
GeSn well which ensures the stra
quantum well. A 76Å thick Ge0.8
between two tensile strained Si0.09G
type-I single quantum-well(QW) a
relaxed Ge0.872 Sn0.128 layer is used a
of the barrier layer is determined to 
balanced condition for a cubic base
Si0.08Ge0.78Sn0.14 and n-Si0.08Ge0.78S
figure, serve as contact layers.  

 
    

 

 

 

 

 

 

The band profiles for Г valley cond
LH band were calculated by using V
theory [5]. The Schrödinger equ
approximation, considering the strai
is considered in our analysis and is g
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Suffix p stands for type of band e.g
HH band, p=lh for LH band The
Finite Difference Method (FDM) to
wave functions in the well [7]. The
divided into N number of small el
and the equation is solved for e

Fig.1 Schematic diagram of s
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obtained by solving self 
and Poisson equations with 
r obtaining these energies, 
WIP is determined.  

FORMULATION 
n our analysis, consists of 

and compressively strained 
ain balanced condition for 
83Sn0.17layer is sandwiched 
Ge0.8Sn0.11 layers to form a 
as shown in Fig.1. A fully 
as a buffer layer.  The width 
be 35 Å by using the strain 

ed multilayer system [4]. P-
Sn0.14 layers as shown in 

duction band, HH band and 
Van de Walle’s model solid 
ation with effective mass 
in effect and electric field F 
given as [6] 

(1)      ψEψqF(z)-(Z) p=⎟
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g., p=c for Г-CB, p=hh for 
e equation is solved using 
o obtain Eigen energies and 
e whole region of interest is 
lements of equal width, Δz 
ach of the elements. The 
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position dependent charge density of carriers in well (electrons 
in case of CB) is calculated by summing the square of the 
wave function at each spatial element (Δz) and multiplying 
this quantity by the number of carriers in each bound state [8]. 
The obtained charge density is then used in Poisson equation 
to obtain self consistent potential. Poisson equation relates the 
potential to the charge density distribution as given in eqn.2  

( ) (2)                      NNp(z)n(z)
ε
q

dz
Vd

da2

2
−+−−=

where n(z) and p(z) are the electrons and holes charge density 
distribution respectively. Na and Nd are acceptor and doping 
impurities respectively. Dirichlet and Neumann boundary 
conditions are considered in solving the Poisson equation. The 
obtained potential distribution is then again used in 
Schrödinger equation to obtain Eigen energies and hence, 
charge density distribution. Let Vnew(z) be the potential 
distribution as obtained from the poisson equation and Vold(z) 
be the potential distribution used in the Schrödinger equation. 
Vold(z) is replaced by a new potential, Vsc(z),  called  self 
consistent potential which is related to Vnew(z) as follows [9]  
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where i is the number of iterations and its values are 
i=0,1,2…etc. Vold0  is initial value of potential which is nothing 
but calculated band offset, used to solve Schrödinger equation. 
A factor ‘f’ is used to represent mixing fraction of new and old 
potentials. In this work f is typically set to 0.05. After 
completion of the ith iteration Vsc

i(z) is compared with Vsc
i+1(z)  

to obtain a convergence parameter X, which is given as 

(4)                                      
V

(z)V(z)V
X

Z
2
0

i
SC

1i
SC∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

+
 

where, V0 is the surface potential of QW. If X < 0.001 then 
self consistent solution is considered to be converged. The 
same process is also repeated in presence of external electric 
field F. The plot of obtained Eigen energies and wave 
functions of Γ-CB, HH band and LH band is shown in Fig. 2. 
Due to compressive strain in well, HH band shifts upwards 
and LH band shifts downwards as shown in figure. In Fig.3, 
plot of Eigen energies in presence of external negative electric 
field, F, is shown. It is clear from figure that the Γ-CB and HH 
band are tilted downwards. Due to tilting of the bands, Γ-CB 
Eigen energy shifted downwards and HH band Eigen energy 
shifted upwards. After obtaining Eigen energies, absorption 
coefficient (α) is evaluated for unbiased QW with the help of 
Fermi’s golden rule [6]. The incident light is assumed to be 
polarized parallel to the plane of the QW layer (TE mode). 
   α for HH to Γ-CB transition and LH to Γ-CB transition as a 
function of wavelength is shown in Fig.4. It is clearly 
observed from the figure that HH to Γ-CB transition observes 
higher α than that of LH- ΓCB transition. This is due to higher 
optical matrix element of HH to Γ-CB transition for TE mode, 
which plays a crucial role in evaluation of α [6]. The 
significant absorption for HH to Г-CB transition is observed in 
infrared range of wavelength, which agrees with the reported 
result [3]. So, strain balanced GeSn QWIP is a potential 

candidate for group IV based direct bandgap infrared photo 
detector. 

 
 
 

                                           

 

 

 
 
 
 

REFERENCES 
[1] Pallab Bhattacharya, Semiconductor optoelectronic devices, Pearson 

Education Inc., Second ed., New Jersey, 1994. 
[2] J. Kouvetakis, J. Menedez, A.V.G. Chizmeshya., “Tin based group IV 

semiconductors: new platforms for opto and micro electronics and 
silicon,” Ann. Rev. of Mat. Res., Vol.36, pp.497-554, 2006. 

[3] N.Yahyaoui et al., “Band engineering and absorption spectra in 
compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for 
infrared photodetection,” Phys. Status Solidi C., 
doi: 10.1002/pssc.201400054, 2014. 

[4] Guo-En Chang, Shu-Wei Chang, Shun-Lien Chuang, “Strain-balanced 
GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE Journal 
of Quantum Electronics, Vol. 46, pp.1813-1820,2010. 

[5] Chris G. Van de Walle, “Band lineups and deformation potentials in the 
model solid theory,” Phys. Rev. B, Vol.39, pp.1871-1883, 1989. 

[6] Shuan Lien Chuang, Physics of optoelctronic devices, John Wiley & 
Sons inc., New York, 1995. 

[7] Supriyo Dutta, Quantum transport: atom to transisitor, Cambridge 
University Press, New York, 2005.  

[8] IH. Tan et al., “A self consistent solution of Schrödinger-Poisson 
equations using a nonuniform mesh”, JAP, Vol.68, pp.4071-4076,1990. 

[9] Frank Stern, “Iteration methods for calculating self-consistent fields in 
semiconductor inversion layers,” J. Comp. Physics, Vol.6, pp.56-67, 
1970. 

             
                      (a)                                         (b) 

     Fig.3 Plot of Eigen energies in presence of   electric field  
(a) F=2Mv/m, (b) F=4Mv/m 

 
Fig.2 Plot of Eigen energies and wave functions 

without any electric field  

             
   Fig.4 plot of α for HH to Γ-CB and LH to Γ-CB transitions 
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