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Abstract- The radiated power enhancement (suppression) of a 
c-plane (c-axis) oriented radiating dipole at a given emission 
wavelength in the quantum well of a c-plane, deep-UV 
light-emitting diode (LED) when it is coupled with a surface 
plasmon (SP) resonance mode induced on a nearby Al 
nanoparticle (NP) is demonstrated. Also, the enhanced radiated 
power mainly propagates in the direction from the Al NP toward 
the dipole. Such SP coupling behaviors can be used for 
suppressing the TM-polarized emission, enhancing the 
TE-polarized emission, and reducing the UV absorption of the 
p-GaN layer in such a deep-UV LED. 
 

I. INTRODUCTION 

Although a few research groups have been trying to 
commercialize their deep-ultraviolet (UV) light-emitting 
diodes (LEDs). A few major problems still exist, including (1) 
the low crystal quality of AlGaN and hence low internal 
quantum efficiency (IQE) of an AlxGaN/AlyGaN quantum 
well (QW), (2) the poor conductivity of p-AlGaN and hence 
the use of a UV-absorbing p-GaN layer at the top for 
increasing the current injection efficiency into a QW, and (3) 
the dominating c-axis-polarized (transverse-magnetic- or 
TM-polarized) emission in a c-plane LED when the Al 
content of an AlGaN QW is higher than ~25 % or the QW 
emission wavelength is shorter than ~300 nm, and hence the 
even lower light extraction efficiency (LEE) due to the lateral 
propagation of such TM-polarized emission.  

Surface plasmon (SP) coupling in an InGaN/GaN QW LED 
has been proved to be an effective approach for enhancing the 
IQE of a QW. The coupling process between an SP mode 
induced on an embedded Ag nanoparticle (NP) and a radiating 
dipole has been numerically studied. From the simulation 
results, a few points are worth noting for deep-UV LED 
application. First, in the SP-dipole coupling process, the 
enhanced radiated power mainly propagates in the direction 
from the Ag NP toward the radiating dipole. In a lateral LED 
with an Ag NP embedded in the p-type layer, the enhanced 
radiation mainly propagates toward the substrate side. Second, 
the emission enhancement or suppression at a wavelength 
relies on the orientation of the source dipole. In the case of an 
embedded metal nanosphere (NS), emission enhancement 
(suppression) is usually observed at the wavelength of a 
lower-order (higher-order) SP resonance mode for a 

radial-oriented source dipole and vice versa for an 
orbital-oriented source dipole. Hence, in a c-plane LED, by 
embedding a metal NS in the p-type layer, the emission of a 
transverse-electric- or TE- (TM-) oriented dipole can be 
enhanced (suppressed). In this paper, we report the 
simulation results of using an embedded Al NS in a 
p-AlGaN layer to induce localized surface plasmon 
(LSP) resonance for coupling with a radiating dipole 
in an AlGaN QW such that the TE-polarized emission 
can be enhanced, the absorption of the over-grown 
p-GaN layer can be reduced, and the TM-polarized 
emission can be suppressed.  

 
II. THEORETICAL MODEL AND NUMERICAL ALGORITHM 

  In this coupling process, one or more SP modes are induced 
on a metal structure by a nearby radiating dipole. The induced 
SP can interact with the source dipole for changing its 
radiation behavior. Then, the changed radiation behavior of 
the source dipole further influences the SP resonance property 
and so on. A numerical algorithm has been developed for 
including such a feedback effect in the coupling process 
between an SP mode and a radiating dipole. In this algorithm, 
the unperturbed electromagnetic field emitted by a radiating 
dipole situated in a homogeneous spherical background 
medium of GaN is first evaluated with an analytical method 
or a numerical approach. Then, the total field is calculated in 
the real problem geometry, including the radiating dipole and 
the metal structure. By subtracting the unperturbed field from 
the total field, we can obtain the scattered field, which is to be 
used for evaluating the feedback effect on the dipole radiation 
behavior from the SP resonance on the metal structure. With 
the available scattered field, the optical Bloch equations are 
solved to find the resultant strength and orientation of the 
modified radiating dipole following an iteration procedure. 
Based on the modified radiating dipole, the final total 
electromagnetic field can be calculated numerically. We can 
then evaluate the total radiated power as well as the absorbed 
power in the metal region. 
 

III. SIMULATION GEOMETRIES 

In Figs. 1(a)-1(d), we schematically demonstrate the four 
simulation structures (A-D). Figure 1(a) shows the structure 
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Fig. 1. (a)-(d): Schematic demonstratio
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IV. SIMULATION RESULTS 
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Fig. 3. Spectra of the norm
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