Fundamental properties of GaN(0001) films grown directly on $Gd_2O_3(0001)$ platforms: ab initio structural simulations

Kuo-Cheng Liao, Po-Liang Liu*, Huan-Chen Wang, and Yu-Hsien Wang

Graduate Institute of Precision Engineering, National Chung Hsing UniversityNCHUTaichung 402, Taiwan

(Dated: April 30, 2015)

60

ABSTRACT I.

We present first-principles calculations to study the heterojunction between a wurtzite GaN(0001) film and a hexagonal $Gd_2O_3(0001)$ substrate. We report that ⁵⁰ the most favorable $Gd_2O_3(0001)$ surface is O termi-Using the work of adhesion of isolated GaN nated. and Gd_2O_3 slabs, our calculated interface energies suggest that the graphiticlike GaN films are fully relaxed at $Gd_2O_3(0001)$ platforms, thereby leading to Ga-polarity ⁵⁵ in the GaN(0001) epitaxial film. Our findings agree with previously reported results. Keywords: GaN; Gd₂O₃; in-

10 terface; polarity; first-principles calculations E-mail address:liupo@ms5.hinet.net or pliu@dragon.nchu.edu.tw

INTRODUCTION II.

Research on epitaxial growth of wide band gap and high gate dielectric materials based on rare earth ox-65 15 ides (REOs) has introduced in the Si complementary metal-oxide-semiconductor (CMOS) and GaN MOS fieldeffect-transistors (MOSFETs) devices $^{1-6}$. Attempts to replace alternative dielectrics with their thermodynamic

stability in these devices motivated a significant effort 70 to develop REO thin films of the gadolinium (III) oxide $(Gd_2O_3)^{\hat{1},2,4-6}$. Recently, the lattice parameters of a cubic bixbyite crystal gadolinium sesquioxide (α - Gd₂O₃) layer have been demonstrated to be comparable to those

- of its suitable template of Si(111), where the epitaxially strained α - Gd₂O₃ films impose a tensile strain (0.1%) in the in-plane direction and compressive strain ⁷⁵ (0.46%) in the out-of-plane direction with a Gd₂O₃ [110] // Si[110] and Gd₂O₃ (111) // Si(111) epitaxial relation-
- ship, respectively¹. Alternatives to silicon substrates, α - Gd₂O₃ layers have been grown on GaAs(100) and this represents that the epitaxially strained α - Gd₂O₃ films impose a large tensile strain (3.9%) in the in- $_{80}$ plane direction and compressive strain (1.9%) in the
- out-of-plane direction with a Gd_2O_3 [110] // GaAs[011] 35 and $Gd_2O_3(1\overline{1}0)$ // GaAs(100) epitaxial relationship, respectively². Moreover, the 6H-SiC(0001) substrates are used to initially produce the structurally similar 85 Gd_2O_3 islands with the hexagonal crystalline structure
- via molecular beam epitaxy (MBE) growths, which sub-40 sequently transform into flat films in a mixture of [111]oriented cubic bixbyite and monoclinic structure with the superior dielectric constant of $\varepsilon = 22$ and leakage current $_{90}$ of $10^{-8} \frac{A}{cm^2}$ @1V³. Furthermore, alternate approaches in-
- volving epitaxial growth on GaN-on-sapphire substrates

that can fabricate a gate dielectric for inversion-channel devices have been developed and then used to achieve the integration of MBE-grown high-temperature monoclinic Gd₂O₃ films on GaN-on-sapphire substrates at a substrate temperature of $700^{\circ}C^4$. In contrast, thin films of hexagonal Gd₂O₃ (h- Gd₂O₃) films on GaN-on-sapphire substrates at lower substrate temperatures $(550^{\circ}C)$ have been shown to exhibit excellent structural quality in spite the significant mismatch (20between the two materials along the in-plane [100] direction [in-plane distances in h- Gd_2O_3 (0001) and GaN(0001) films are 3.86 and 3.189, respectively]⁶. In this regard the overgrowth of GaN(0001) films shows the ability to relieve stress when grown on the stiffer h- Gd_2O_3 (0001), i.e., GaN(0001)/h- $Gd_2O_3(0001)/GaN(0001)/Al_2O_3$ (0001). Note that the h-Gd₂O₃ films is a high-temperature phase that exists at temperature over $2473^{\circ}C$ and estimates the dielectric constant yielding high ε 24 reducing the capacitive effective thickness (CET) down to 0.5 nm^5 . A preliminary experimental account of the structure and unique properties in the GaN(0001)/h- Gd_2O_3 (0001) system was described in Refs. 4-6 but fundamental bonding, and electronic and energetic properties near the heterojunction of the GaN(0001)/h- Gd_2O_3 (0001) were not presented. In this paper, we report the optimized GaN(0001)/h- Gd_2O_3 (0001) heterostructure, which provides its thermodynamic and electronic properties of the interface structure and elucidates the most stable bonding configuration that enables strain relaxation.

III. COMPUTATIONAL METHODOLOGY

We performed a series of ab initio calculations based on the density functional theory (DFT) to elucidate the bonding, and electronic and energetic properties of various $GaN(0001)/h-Gd_2O_3(0001)$ heterostructures. The ground state energy calculations of bulk and interface unit cells were all carried out using the Vienna Ab Initio Simulation Package $(VASP)^{7-9}$. We employed the Vanderbilt ultrasoft pseudopotentials (USPPs) to efficiently treat ion-electron interactions. Here USPPs was derived from the projector augmented wave (PAW) method and the generalized gradient approximation (GGA) with the Perdew-Wang (PW91) exchange-correlation functional^{10–12}. The electronic configurations for the valence electrons are N: $2s^22p^3$, O: $2s^22p^4$, Ga: $4s^24p^1$, and Gd: 4f $s^{7}5d^{1}6s^{1}$. An approximate formulation of the interface energy was described in Refs. 13 and 14 and is a general function of the gallium for GaN, nitrogen,

NUSOD 2015

gadolinium for h-Gd₂O₃, and oxygen chemical potentials ⁹⁵ (i.e., $\mu_{Ga}, \mu_N, \mu_{Gd}, \text{ and } \mu_O$). by the transformation into the graphiticlike structure to

IV. INTERFACE STRUCTURES

Our approach for understanding the stability of the GaN/h- Gd₂O₃ heterostructures is based on the previous observation of GaN(0001) // h-Gd₂O₃ (0001) and GaN[10 0] // h-Gd2O3[10 0] [6].Accordingly, we focus on four representative structures: (i) Ga-polar GaN is grown on O-terminated Gd2O3 represented by the model 1, (ii) Ga-polar GaN is grown on Gd-terminated Gd₂O₃ represented by the model 2, (iii) N-polar GaN is grown on O-terminated Gd₂O₃ represented by the model 3, and

(iv) N-polar GaN is grown on Gd-terminated Gd_2O_3 represented by the model 4. The basal dimensions of the all supercells were fixed at a = 3.726 Å and b = 6.454 Å. The dimension perpendicular to the interface

- ¹¹⁰ is approximately 70 Å and is chosen to minimize coupling between their free surfaces. The stoichiometry of all slabs was fixed at 8 f.u. of GaN and 4 f.u. of h-Gd₂O₃. Atom positions in each of the structural models are fully relaxed with a plane wave cutoff of 500 eV and a
- ¹¹⁵ $1 \times 6 \times 1$ MonkhorstPack grid consisting of 9 irreducible kpoint for reciprocal space integrations, yielding the total slab energy $E_{slab}^{GaN \land Gd2O3}$ and the optimized structures¹²⁵ shown in the four models depicted in Figure 1. The most energetically favorable interface of the model 1 leads to
- ¹²⁰ Ga-polar GaN(0001). We find that the interface is consistently sharp and highly epitaxial, indicating that the remarkable planarity of the GaN film is largely relaxed¹³⁰

FIG. 1. Atomistic representations of the four GaN/Gd₂O₃ interface models with a $1 \times \sqrt{3}$ basal dimension in the hexagonal lattice structure. Models 1 and 2 have Ga-polar GaN surfaces, while models 3 and 4 have N-polar GaN surfaces. The atoms are represented by spheres: Ga (brown), N (blue), Gd (green), and O (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

remove the dipole, which is close to the ideal graphitic structure. In particular, wurtzite GaN nanofilms can be readily stabilized by eliminating sp^3 tetrahedral toward sp^2 trigonal planar coordination, which are commonly observed in previous studies on the GaN(0001)/Sc₂O₃ (111) heterostructure and the stabilization of the polar surface atoms of wurtzite materials^{15,16}

- ¹ J. X. Wang, A. Laha, A. Fissel, D. Schwendt, R. Dargis, T. Watahiki, R. Shayduk, W. Braun, T. M. Liu, H. J. Osten, Semicond. Sci. Technol. 24, 045021 (2009).
- ² A. R. Kortan, M. Hong, J. Kwo, J. P. Mannaerts, N. Kopylov, Phys. Rev. B **60**, 10913 (1999).
- ³ A. Fissel, M. Czernohorsky, H. J. Osten, Superlattices Microstruct. 40, 551 (2006).

135

140

145

- ⁴ W. H. Chang, C. H. Lee, P. Chang, Y. C. Chang, Y. J.¹⁵⁵ Lee, J. Kwo, C. C. Tsai, J. M. Hong, C.-H. Hsu, M. Hong, J. Cryst. Growth **311**, 2183 (2009).
- ⁵ W. H. Chang, C. H. Lee, Y. C. Chang, P. Chang, M. L. Huang, Y. J. Lee, C.-H. Hsu, J. M. Hong, C. C. Tsai, J. R. Kwo, M. Hong, Adv. Mater. **21**, 4970 (2009). 160
 - ⁶ M. Hong, J. Kwo, S. N. G. Chu, J. P. Mannaerts, A. R. Kortan, H. M. Ng, A. Y. Cho, K. A. Anselm, C. M. Lee, J. I. Chyi, J. Vac. Sci. **20**, 1274 (2002).
 - ⁷ G. Kresse, J. Furthmller, Phys. Rev. B **54**, 11169 (1996).

- ⁸ G. Kresse, J. Furthmller, Phys. Rev. B **6**, 15-50 (1996).
- ⁹ G. Kresse, J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).
 ¹⁰ G. K. D. L. L. & D. D. B. 50, 1756 (1999).
- ⁰ G. Kresse, D. Joubert, Phys. Rev. B **59**, 1758 (1999).
- ¹¹ J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Petersen, D. J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
- ¹² J. P. Perdew, Y. Wang, Phys. Rev. B **45**, 13244 (1992).
- ¹³ P.-L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, I. S. T. Tsong, Phys. Rev. B **72**, 245335 (2005).
- ¹⁴ Y. Yamada-Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, Q. K. Xue, J. Tolle, P.-L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, I. S. T. Tsong, Phys. Rev. Lett. **95**, 266105 (2005).
- ¹⁵ C. L. Freeman, F. Claeyssens, N. L. Allan, J. H. Harding, Phys. Rev. Lett. **96**, 066102 (2006).
- ¹⁶ P.-L. Liu, K.-C. Liao, Scripta Mater. **68**, 211 (2013).