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Abstract—Rate equation approaches are a standard method
to describe and examine the dynamics of various semiconductor
lasers, including nanolasers with high spontaneous emission rates.
Using the more complex Bloch equation model we investigate the
impact of the internal timescales on the modulation response
and demonstrate the limitation of rate equation approaches for
systems where photon decay rate and polarization decay have
similar orders of magnitude.

I. INTRODUCTION

Decreasing the cavity volume of nanostructured semi-
conductor lasers entails a variety of consequences on the
emission properties of the device, especially due to the in-
creased rate of spontaneous emission [2]. Previous works
on nanolaser devices already discussed how the Purcell-
enhanced spontaneous emission may increase the modulation
bandwidth below threshold [3] or reduce it above threshold
[4]. However, extensive microscopic modeling of the light
emitting characteristics of nanolasers showed that care has
to be taken, as rate equation results may underestimate the
modulation properties [5] and also may misinterpret the impact
of the microscopic scattering processes [6], [7]. In the present
paper we want to deepen the understanding of the interplay
between the different timescales that are present in such a
nanolaser device, especially investigating the effect of photon
lifetime, polarization decay and spontaneous emission rate.
Thus, by using a simplified microscopically-adapted Bloch-
equation model, we analyze the impact of varying timescales
on the dynamic response of the laser and discuss what rate
equations miss for the case of similar photon and polarization
decay. We also show that it is hard to predict the effect of
spontaneous emission enhancement without exactly knowing
the remaining timescales, as both, a better and a decreased
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Fig. 1. (i) Quantum dot laser scheme [1]; (ii) Inversion decay T−1
1 (we)

(red line) and pump strength d0(we) (blue line) in dependence of the wetting
layer electron density we; (iii) Time series with modulated pump current
(modulation period Tmod) and resulting modulation amplitude Imod.
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Fig. 2. Modulation response versus the modulation frequency fmod for rate
(red lines) and Bloch (blue lines) equations. The corresponding Rabi ΩRabi

and relaxation oscillation frequencies of the Bloch system fRO,Bloch are
marked by vertical blue dashed lines. Parameters: κ = 1011s−1, τ−1

sp =
1010s−1, we = 6 · 1011cm−2; (i) γ = 1012s−1, (ii) γ = 1011s−1.

modulation bandwidth can result.

II. MODELING

We describe our quantum-dot nanolaser system by using
the following Bloch equation model containing equations for
the field amplitude E, the polarization p, and the inversion d.
It is adapted from simple laser equations [8] with additional
Purcell-enhanced spontaneous emission rate [3] and micro-
scopic details of quantum-dot laser dynamics [1], [9].

Ė = −κE + 2ZQDΓ|g|p+
ZQDΓβFP

τspE

(
d+ 1

2

)2

(1)

ṗ = −γp+ |g|Ed (2)

ḋ = −4|g|Ep+
d0 (we)− d
T1 (we)

− FP

τsp

(
d+ 1

2

)2

(3)

The dominating timescales are the polarization decay γ, the
photon decay rate κ and the rate of spontaneous emission τsp.
The Purcell and spontaneous emission factors are indicated
with FP and β, respectively, ZQD denotes the number of
quantum dots in the active region, and g is the gain. For
simplicity we assume equal electron and hole carrier densities
ρe = ρh in the quantum dots and define the inversion as d =
ρe − ρh − 1. The carrier-carrier coulomb scattering processes
needed to fill the confined quantum-dot levels are modeled by
the inversion lifetime T1(we) = (Sin+Sout)−1 ·10−12 and the
pump strength d0(we) = 2Sin

Sin+Sout − 1, where the scattering
rates Sin, Sout are described in [1], [9]. In this simplified
approach the carrier density in the surrounding quantum-well

NUSOD 2015

125978-1-4799-8379-7/151$31.00 ©2015 IEEE



we/h takes the role of the pump current. Figure 1(ii) depicts the
dependence of T1 and d0 on the quantum-well carrier density.
For increasing occupation in the well, both quantities increase.

Eliminating the polarization dynamics of Eq. (2) adia-
batically (ṗ = 0) [8] and using the resulting static relation
p(E, d) within the two remaining equations leads us to the
corresponding rate equation system. For the case of fast
polarization decay γ the expected results of both models are
equal, however we discuss the deviations for the case of κ ≈ γ
and the resulting consequences for the impact of τsp on the
modulation response.

III. RESULTS

Figure 2 shows the small signal modulation dynamics
of the laser using both modeling approaches. The deviation
between the rate and the Bloch equation approach is obvious
and can be explained with the resonance induced by the
Rabi-oscillations (ΩRabi). For the Bloch system, both sub-
figures show a (local) maximum of the response, whereas the
rate equation system is strictly monotonically decreasing. For
Fig. 2(i) γ > κ holds, which leads to a resonance noticeably
larger than the cutoff frequency f−3db and thus the cutoff
frequencies of the rate equation approach do not differ from
the Bloch equation system. When the polarization decay γ
approaches the photon decay κ (see Fig. 2(ii)) the modulability
of the Bloch system is noticeable improved by the additional
resonance. However, with the chosen set of parameters, the
response drops below the threshold of -3db, before increasing
again and forming the typical resonance peak at fRO,Bloch.
This cannot be modeled by the rate equation system due
to its missing polarization dynamics. Hence, we restrict our
investigations in the following to the Bloch equation system.
Figure 3 shows the modulation response curves of the Bloch
system in dependence of the spontaneous emission rate τ−1

sp .
Additionally, the eigenvalues of the linearized system are
plotted. Their imaginary parts =(λi) are marked by filled
circles, color coded by the value of the largest real part <(λi).
In both sub-figures we recognize an increasing largest real part
<(λi) for higher spontaneous emission rates, which obviously
weakens the resonance peaks. Fig. 3(i) shows situations similar
to Fig. 2(ii) (γ ≈ κ). By adjusting the values of the time scales
γ and κ (see Fig. 3(ii)), we may omit the early drop below the
threshold of -3db. Then, with increasing spontaneous emission
rate, the cutoff frequency is increased, which broadens the
modulation bandwidth of the nanolaser device.

IV. CONCLUSION

We investigate the effect of large variations in the sponta-
neous emission rate of a nanolaser on the modulation response.
We show that depending on the internal timescales, especially
on the frequency and damping of the Rabi-oscillations, either
an increase or a decrease of the bandwidth can be expected.
Further we show that rate equation models that are widely
used to describe the modulation response of lasers may lead
to wrong predictions for the case of nanolasers with equal
polarization and photon decay rates.
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Fig. 3. Modulation response vs. fmod vs. different spontaneous emission
rates τ−1

sp (Bloch equations). Blue regions represent responses above, red
regions below f−3db. Filled circles indicate the imaginary parts of the
eigenvalues, color coded by the value of the real part. White circles and gray
dots on the τ−1

sp − fmod−base plane are the projections of the imaginary
part circles and the cutoff frequency dots. Parameters: we = 8 · 1011cm−2;
(i) κ = 1011s−1, γ = 1011s−1, (ii) κ = 1012s−1, γ = 1012s−1.
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[1] K. Lüdge, B. Lingnau, C. Otto, and E. Schöll, “Understanding electrical
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