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Abstract—One-band 1D effective mass model useful in the 
simulations of layered n-type devices is proposed. The model 
preserves nonparabolicity both in transport and in-plane 
directions and enables calculations of intersubband absorption. 
Simulations of quantum cascade laser are presented which use 
the model within nonequilibrium Green’s function method. 
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I.  INTRODUCTION 

Single-band effective mass equation (EME) is a simple and 
useful description of electronic properties of unipolar devices. 
For optoelectronic devices utilizing optical transition between 
energy levels far from the band edge, this treatment occurs 
unsufficient due to the influence of remote bands. Multiband 
kp Hamiltonians are then necessary, which are more complex 
and hardly useable when self-consistent solutions taking into 
account multiple scattering mechanisms are required. For this 
reasons, various modifications of EME are proposed in order to 
enhance device’s physics description maintaining the benefit 
relaying on one-band treatment. One of them is 1D equation  
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which can be used to model n-type layered devices. It uses 
isotropic (bulk) energy dependent effective mass (EDEM) both 
in longitudinal (z) and in-plane kinetic energy terms. Equation 
(1) was shown to reproduce well the in-plane nonparabolicity 
predicted by 8  8 kp description [1] and was successfully 
applied to model quantum cascade lasers (QCLs) utilizing 
intersubband transitions in the conduction band [1],[2]. The 
solutions of (1) are, however, not orthonormal what rises the 
problems connected with correct evaluation of the momentum 
matrix elements. They cannot be overcome by completing the 
functions f(z) with fictitious valence band components g(z), as 
proposed in [3],[4] because the two-band counterpart of (1) is 
still energy dependent and do not provide orthogonal states. In 

the paper another effective mass approximation is proposed 
which also reproduces 8  8 kp in-plane dispersion well and 
simultaneously reduces to longitudinal Hamiltonian which has 
energy independent two-band counterpart. Then, intersubband 
absorption can be rigorously treated as described in [3],[4]. 
This model is used with nonequilibrium Green’s function 
(NEGF) method to simulate QCL emitting at ~ 5 μm. In this 
device the transitions occur between the states which are more 
than 0.25 eV above conduction band edge so that accounting 
somehow for nonparabolicity is mandatory for quantity-aimed 
analyses. 

II. ANISOTROPIC NONPARABOLICITY 

Instead of (1), one may consider  
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where different effective masses are used in transport and in-
plane directions. The dispersion relation for the in-plane vector 
k, obtained for an exemplary quantum well by inserting m(E, z) 
= m*(z){1 + [E – Ec(z)]/Eg(z)} into (2b), is shown in Fig. 1. As 
can be seen, the deviation from 8  8 kp prediction for lower 
state is even smaller than that for (1). However, there is no 
evidence which approximation is better because 8  8 kp is 
also an approximation which introduces errors at high-k values.  

The subscript ‘aw’ in (2b) abbreviates ‘active wells’ so, zaw 
points at the wells where major optical transition takes place. 
Fixing z at zaw in (2b) makes Ez loose its spatial dependence 
and then (2a) takes the usual form of energy-dependent EME 
[3],[4]. Equation (2a) provides longitudinal solutions f(z) which 
are still non-orthogonal, however, unlike in (1), orthonormality 
can be easily recovered evaluating fictitious valence terms [3]  
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Two-component wave functions (f, g) form orthonormal set 
which can be used in the calculations of momentum matrix 
elements [3],[4]. 

 
0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6
en

er
gy

 E
  (

eV
)

momentum k (1/nm)  

Fig. 1. In-plane dispersion calculated for (1) - solid, or (2) - dashed, for 4.8 
nm wide InGaAs/AlInAs quantum well (lattice matched to InP) compared to 8 
 8 kp calculations in [1] (dotted) and 14  14 kp model (dash-dotted) of [5]. 

III. NEGF IMPLEMENTATION 

Equation (2) defines the k-dependent Hamiltonian which 
can be used in NEGF method. In the real space implementation 
of [2], the conduction band Green’s functions (GFs) GR, G<, are 
the four-parameter functions of positions z, z’, energy E, and 
momentum modulus k. They can be found in self-consistent 
solution of Dyson, Keldysh and Poisson equations that involve 
scatterings and coupling to the leads through appropriate self-
energies. In the iteration procedure virtual valence components 
(index υ) of GFs (equivalent to eigenfunctions components g) 
should be evaluated as they contribute to densities of states 
(DOS) and electrons (DOE)  
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and so influence the self-consistent solution through Poisson 
equation. For discretized Hamiltonians, useful in numerical 
simulations and offering compact form of integral equations, 
the retarded GF valence component is given by [6] 
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where Hcυ is the discretized differential operator  
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Valence components of lesser Green’s function can be obtained 
from the matrix equation  
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where Σ< is the lesser self-energy. Eventually, the optical gain 
can be evaluated making use of the formulation in [7] applied 
to two-band Hamiltonian, as in [6]. 

IV. QCL SIMULATIONS 

 Equation (2) was used with the NEGF implementation of 
Sec. III to calculate electronic transport and optical gain in 
QCL design of [8]. In Fig. 2, which shows sample results, 
focus is paid on k-resolved quantities which demonstrate in-
plane nonparabolicity contained in the model. Preserving this 
feature is crucial for realistic modeling of intersubband gain. 
As discussed in [9], in these devices gain can emerge due to 
local (in k-space) population inversion, which is not destroyed 
by high-k absorption due to inherent in-plane nonparabolicity. 
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Fig. 2. (a) Spectral function at k = 0, and (b) subband occupation in active 
wells of 5 μm 2-phonon resonance QCL design of [8]. Population inversion is 
observed only at low-k momenta where the occupation of upper laser subband 
4 exceeds the occupation of lower laser subband 3. 4→3 transitions at high-k 
values, where the occupation is normal, do not destroy gain because they 
absorb photons with lower energy: hvhigh-k < hvlow-k. These transitions burn a 
hole in front of the gain peak in the gain spectrum as shown in the inset. 
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