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Abstract—Semiconductor quantum dots are promising candi-
dates for the realization of electrically pumped single-photon
sources. The numerical simulation of such devices has to deal
with cryogenic temperature effects and suitable models for
the quantum dot occupation and single-photon generation. We
demonstrate some first steps in a hybrid approach for the simu-
lation of electrically pumped single-photon sources by coupling
the semiconductor transport equations to a quantum mechanical
model for the microscopic physics.

I. INTRODUCTION

Single-photon emitters are opto-electronic devices that ide-
ally emit a single photon in response to an external excitation.
Such devices enable many interesting applications such as
quantum key distribution, quantum repeaters, quantum metrol-
ogy and quantum computing [1], [2]. A promising candidate
for electrically driven single-photon sources are semiconductor
quantum dot (QD) based devices. QDs provide an excellent
representation of two-level systems and can be grown in semi-
conductor micro-cavities by well established fabrication tech-
niques. Numerical simulation of carrier transport and single-
photon generation can help to study the device performance
and enhance its efficiency.

II. DEVICE CONCEPT AND CHARGE CARRIER TRANSPORT
AT CRYOGENIC TEMPERATURES

On a macroscopic level the charge carrier transport can be
studied in the framework of the van Roosbroeck system [3]
which is a coupled system of the nonlinear Poisson’s equation
for the electrostatic potential ψ

−∇ · ε0εr∇ψ = q
(
p− n+N+

D −N
−
A

)
(1)

and a continuity equation for each carrier species

q∂tp+∇ · jp = −qR [ψ, p, n] ,

q∂tn−∇ · jn = −qR [ψ, p, n] .
(2)

Here n denotes the electron density, p is the hole density, q
is the elementary charge, εr is the dielectric constant of the
semiconductor, ε0 is the vacuum permittivity and R models
various recombination mechanisms (Shockley-Read-Hall re-
combination, Auger recombination, radiative recombination).
The current densities jn and jp are modeled in a standard

way as drift and diffusion currents [4], [5]. The device layout
considered here is a GaAs-based p-i-n structure with a non-
planar surface on top. It has been shown that such non-planar
structures can significantly enhance the photon extraction
efficiency by reduction of the total internal reflection [6]. In
the center of the intrinsic domain a very thin film of InGaAs is
grown epitaxially on the GaAs substrate. The lattice mismatch
induced strain in the material composition causes the self-
organized formation (Stranski–Krastanov growth mode) of a
wetting layer (WL) and quantum dots (QD).

The device is designed for operation at T = 30K to ensure
the existence of bounded states in the InGaAs-QD and a
small emission linewidth. In this situation the thermal energy
is ten times smaller than at room temperature and therefore
several aspects of device simulation become important that are
insignificant at room temperature but crucial in the cryogenic
limit.

The carrier densities are governed by the chemical potentials
which scale with the thermal energy kBT . Consequently small
differences between the band edge energy and the carriers
quasi Fermi potential are exponentially enhanced and result
in domains with either a very low (depleted semiconductor)
or very high (degenerated semiconductor) carrier densities,
separated by extremely narrow boundary layers. In this case
the carrier densities need to be described by the Fermi-
Dirac distribution - the Boltzmann approximation is not valid
anymore at cryogenic temperatures. Another important aspect
is the incomplete ionization of the built-in dopants. At 30K the
carriers tend to freeze out if the built-in impurity concentration
is below the critical impurity density for the Mott metal-
insulator transition. The activated net doping in Eq. (1) can
differ significantly from the built-in dopant concentrations and
must be computed from

N+
D =

ND

1 + 2e(EFn−ED)/kBT

and

N−A =
NA

1 + 4e(EA−EFp )/kBT

along with a suitable model for the activation energies EA and
ED [5], [7]. Moreover, we consider models for the energy band
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gap and carrier mobilities that take the impurity density and
temperature dependence into account.

We study the carrier supply for the QD and the current
flow in the device in the low and moderate injection regime.
Transient numerical simulations indicate that the device fol-
lows electrical pulses on a very fast timescale such that the
maximum operation frequency is set by the radiative lifetime
of the excitons in the QD. The numerical simulations are
performed using the software package WIAS-TeSCA [8] based
on a finite volumes Scharfetter-Gummel method [9].

III. QUANTUM DOT OCCUPATION AND PHOTON KINETICS

The core element of the device is the QD, where
the electron-hole-recombination and single-photon generation
takes place. This section of the device is described in the
framework of cavity quantum electrodynamics as an open
quantum system coupled to the surrounding device as an
external reservoir. For simplicity, we consider the QD as a
two-level system which can be either empty or occupied by
an exciton. The exciton-photon interaction is described by the
Jaynes-Cummings Hamiltonian

H = ~ω0a
†a+ ~ (ω0 + δ) b†b+ ~g

(
b†a+ ba†

)
,

where a and a† are the annihilation and creation operators for
the photons with energy ~ω0 obeying the bosonic commutator
relation

[
a, a†

]
= 1. The capturing and recombination of the

excitons is modeled by the operators b and b† with the anti-
commutator relation

{
b, b†

}
= 1. The exciton energy can

be weakly non-resonant to the photon energy with a small
detuning δ. The light-matter coupling constant g is determined
by the dipole transition moment, the mode volume and the
photon wavelength. The interaction of the QD with the carrier
reservoir is modeled by a density matrix approach with a non-
unitary time-evolution given by the Kossakowski-Lindblad
equation

∂tρ = − i
~
[H, ρ] + κL(a)ρ+ γL(b)ρ+ pL(b†)ρ (3)

where L(a)ρ = aρa†− 1
2

{
a†a, ρ

}
denotes the Lindblad super-

operator [10]. The dissipative interactions of the QD with the
reservoir considered in this model are:

1) photon emission from the cavity with a rate κ
2) spontaneous emission with a rate γ (exciton decay)
3) pumping of excitons from the reservoir into the QD with

a rate p
It was shown earlier that the probability of multi-photon
events can be strongly suppressed by pulsed electrical injection
[11]. Thus we assume stationary as well as time-dependent
pumping rates. The pumping rate p(t) represents the coupling
parameter between the macroscopic transport described by
Eqs. (1) & (2) and the microscopic model Eq. (3). In order to
study the dynamics of the QD state and the photon number,
the quantum master equation (3) is projected on a finite-
dimensional subspace that can be truncated at large photon
numbers. The resulting set of ODEs is studied numerically by
standard methods.

reservoir
(pumping) (spontaneous emission)

(photon emission)cavity

Figure 1. Dissipative interactions of the QD in a micro-cavity with an external
reservoir and a quantized electromagnetic field. The microscopic physics is
described by the quantum master equation (3).

IV. SUMMARY

Numerical simulation of semiconductor-based single-photon
sources requires the coupling of the drift-diffusion system to
a microscopic model in order to display the carrier recombi-
nation and single-photon generation in the QD. In the case of
arsenide-based material systems these devices need to operate
at cryogenic temperatures which is a challenging task for
numerical device simulation. In the framework of a quantum
master equation we study the single-photon generation in a
simple two-level system that is coupled to the device as an
external reservoir.
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