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Abstract—We consider the conditions for perfect absorption in 
uniform thin-films and in thin gratings. We find that perfect 
absorption of TE polarized light can occur in gratings composed 
of weakly absorbing materials.    

The quest for thin perfect absorbers is interesting in its own 
right but is particularly important for applications such as 
photodetectors and solar energy. It is well-understood that the 
maximum absorption in a negligibly thin layer (i.e. for which ݊݀ ا  where ݊ is the refractive index, ݀ is the thickness ,ߣ
and λ is the wavelength) is 50% when the layer is in a 
uniform background and light is incident from a single side. 
The reason is simple [1]: the light can be decomposed into an 
even and an odd mode, the latter of which has a node 
coinciding with the layer. For a thin layer the absorption of 
this mode vanishes, which means that the maximum 
absorption is achieved when the even mode is fully absorbed, 
corresponding to a total absorption of 50%. Complete 
absorption is possible when the radiation is incident 
symmetrically or when a layer with half the thickness is 
placed on an ideal mirror. These two cases are equivalent, and 
here we only consider the second of these. 

Perfect absorption in a uniform structure has been 
considered by many authors (see, e.g., [1],[2],[3],[4]). A layer 
with (complex) refractive index ݊ ൌ ݊ᇱ  ݅݊ᇱᇱ, and thickness ݀/2, with air on one side and a perfect mirror on the other 
(see Fig 1a), exhibits perfect absorption when ݎ  ߜ ൌ 0 
where ݎ ൌ ሺ1 െ ݊ሻ ሺ1  ݊⁄ ሻ is the (Fresnel) reflection from 
air into the layer and ߜ ൌ ݁మഏഊ . Solving this for normal 
incidence in the limit  ݊݀ ا ݊ while ߣ ب 1 it is found that, to 
lowest order, ݊ ൌ ඥ݅ߣ ሺ݀ߨሻ⁄ , so that ݊ᇱ ൌ ݊ᇱᇱ ן ݀ିభమ. This 
unusual dependence arises because the Fresnel coefficients 
and ߜ depend on refractive index in opposite ways. It is easy 
to show that this condition corresponds to that for critical 
coupling [5], when the time constant associated with losses 
and that associated with transmission out of the structure are 
equal. The absorption ܣ, for a fixed ݀ ൌ 20 nm but various ݊ 
values can be found in Fig 2a—it confirms unit absorption 
near the diagonal and shows a uniform decrease away from 
the optimum value.  All results are for ߣ ൌ 700 nm. 

The problem with the result for a uniform film is that it 
demands exotic materials for which ݊ᇱ ൎ ݊ᇱᇱ. Alternatively it 
has been shown that perfect absorption can be achieved with 

nanostructures composed of common materials. Most of these  
rely on exciting resonances in metamaterials or plasmonic 
particles. Structure have been successfully fabricated that 
target microwave, terahertz and infrared frequencies [6], but 
creating the smaller meta-atoms that would be required for 
operation in the infrared or visible range is unfeasible. 

 

 
Figure 1: Schematics of the geometries considered. In all cases, light of 

wavelength ࣅ is normally incident on a layer of thickness ࢊ/ with 
(complex) refractive index  and a perfect mirror at the back. Perfect 
absorption is equivalent to the reflection vanishing. (a) Uniform structure; (b) 
Uniform structure with surface grating; (c) Periodic structure.    

Here we consider two dielectric based structures. The first 
is shown in Fig. 1b and consists of a uniform film augmented 
by a dielectric surface grating of negligible thickness. The 
second, shown in Fig 1c, is a volume grating in the entire 
structure. In both cases the period of the grating is chosen so 
that only the specular order and the േ1 orders in the medium 
are relevant, while all others are evanescent.  

We have derived an algebraic equation that predicts the 
conditions for perfect absorption for the geometry in Fig 1b. 
The expressions are analytic but require the various reflection 
and transmission coefficients and the ߜ-type parameters 
defined earlier, which must be calculated numerically. We 
expect the solution to be quite different from that of a uniform 
film since the grating can couple light into waveguide modes. 
This increases the path length in the film layer and hence the 
absorption.  

The results for TM and TE polarization, again for normal 
incidence and ݀ ൌ 20 nm for the geometry in Fig, 1b, are 
shown in Fig 2b and Fig. 2c, respectively. The other 
parameters are given in the figure caption. While in both 
cases perfect absorption can be achieved, the nature of the 
solution has changed: for TM polarization the solution is 
close the imaginary (vertical) axis, corresponding to a 
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