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Abstract—Overcoming stimulated Brillouin scattering (SBS) is
a major challenge in optical telecommunications networks and
in fiber lasers. We evaluate the SBS gain coefficient for an all-
dielectric composite material comprising a cubic, subwavelength
array of spheres in a uniform background. We demonstrate total
SBS suppression in fused silica using GaAs spheres.

Stimulated Brillouin scattering (SBS) is a prominent effect
in nonlinear optics, and describes the process that arises when
an incident optical pump excites a coherent acoustic wave in
a material [1]. At power levels above the SBS threshold, the
induced acoustic wave periodically modulates the dielectric
permittivity of the medium, forming a grating which reflects
most of the input power. For this reason SBS is widely
regarded as a nuisance in both fibre-optic telecommunications
[2] and in high power fibre laser design [3], where SBS limits
power scaling. To control this effect, researchers have used
techniques such as doping [4] and dithering [5]; we outline
here an alternative approach involving nanostructuring.

The physical mechanisms behind SBS are photoelasticity
and electrostriction, which are expressed as fourth-rank op-
toacoustic tensors that describe, respectively, the change in
the inverse permittivity with a mechanical strain, and the
induced stress field from an applied electric field [6]. Here
we provide a theoretical framework for numerically evaluating
the effective photoelastic and electrostrictive properties of
a structured material comprising a cubic array of dielectric
spheres in a dielectric background material. We emphasise that
there are no known precedents in the literature for evaluating
the effective acousto-optic properties of a structured material,
despite extensive work on evaluating the effective optical and
acoustic parameters of composites [7].

As an example, we evaluate the gain coefficient for a
subwavelength composite comprising a cubic array of GaAs
spheres in fused silica and show that the gain vanishes when
the spheres are close to touching. This example is relevant
since silica is the material of choice for optical fibres, pos-
sessing low absorption at telecom frequencies and exhibitting
strong SBS [8].

Our objective is to minimise the SBS gain coefficient [3]
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acoustic phase velocity. The photoelastic tensor pijkl is defined
implicitly via [6]
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where "ij denotes the relative permittivity tensor, skl denotes
the strain and summation is implied over repeated indices.

Since the structuring is smaller than both the optical and the
acoustic wavelength in the medium, the waves experience an
uniform “effective” medium with effective parameters which
depend on the properties of the constituent materials as well
as on the details of the structuring. The calculation for the
effective photoelastic parameter consists of three major parts
(see Fig. 1). We (a) determine the effective permittivity of our
composite at long optical wavelengths, (b) model the long-
wavelength acoustic field by imposing displacements on the
boundary of the unit cell and solving the linear equations of
elasticity (to obtain a strained cell with an internal strain field).
Finally, (c) is similar to (a) but is applied to the strained cell
using the strained constituent permittivities.

The effective permittivity is obtained by solving the optical
wave equation for a selection of long-wavelength Bloch vec-
tors and equating the volume-averaged energy density to an
effective energy density ansatz
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Fig. 1. Outline for calculating pe↵
xxyy

: (a) compute effective permittivity for
unstrained cell, (b) induce s

xx

strain, (c) compute effective permittivity for
compressed cell. Arrows: E field lines (red), u (black), 0: perturbed tensors.
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Fig. 2. (a) Effective gain coefficient (blue) and volume average result (dashed), (b) material parameter contributions to the gain, as functions of filling fraction,
for cubic lattice of GaAs spheres in SiO

2

(b: background value).

This generates an invertible system of linear equations in "e↵ij ,
which is solved straightforwardly. Here h·i denotes the cell
volume average, "

0

is the vacuum permittivity and Ej is the
electric field distribution of the Bloch mode.

The perturbed geometry and the internal strain field are
obtained by solving the equations of linear elasticity [7]
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in the static limit, with the boundary conditions

uj

��
@W±x

= �Dx�
xj

��
@W±x

, ujnj

��
@W\{@W±x

} = 0, (5)

with Cijkl the stiffness tensor, �ij the mechanical stress tensor,
ui the displacement, nj the normal vector at the boundary
@W of the unit cell (which is symmetric about the origin),
�ij the Kronecker delta, and D a small parameter controlling
the magnitude of the compression. The boundary conditions
(5) correspond to a se↵

xx

= �D strain for the composite
material. Using this strained configuration, we repeat the first
step and compute the permittivity of the strained geometry.
Comparing the unstrained and strained inverse permittivity
tensors, in addition to using the symmetry properties of cubic
materials, pe↵

xxyy

is then recovered. Having determined the
effective photoelastic parameter for a bulk composite material,
evaluation of the remaining effective parameters in the SBS
gain coefficient (1) is relatively straightforward [9].

For our chosen example of GaAs spheres in a silica back-
ground, the SBS gain coefficient versus filling fraction f is
given in Figure 1a (blue), for an incident pump wavelength
�
1

= 1.55µm and lattice period of 50 nm. The choice of
period ensures the subwavelength assumption is satisfied and
that there are approximately 10 cells per optical wavelength in
the material. The effective gain coefficient for our composite
monotonically decreases with filling fraction for 0% < f <
47% and vanishes at f = 47% due to a sign change in the
effective photoelastic parameter. For comparison we include
an effective gain coefficient calculated using simple volume
averaging of all parameters in (1) (dashed red). This approach
is only approximately similar for very dilute filling fractions
(f . 5%), despite the structuring being subwavelength. This

emphasises the importance of the full numerical treatment
used here to determine the gain. In Figure 1b, we show all
effective material parameters for our composite and consider
their individual effects on the SBS gain coefficient via
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Fig 1b shows that the electrostriction reaches a maximum at
f = 15%, an 8% enhancement compared to pure silica, and
that all materials contribute to the reduction of the gain above
f ⇡ 27% with the exception of the acoustic velocity.

In conclusion, we show that the effective SBS coefficient
can be controlled by subwavelength structuring of a material.
Although we have shown the ability to suppress SBS, it can
be enhanced in this way as well.
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