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Abstract 

The noise behaviors of the epitaxial Si:P BIB detectors 
have been investigated by experimental and theoretical 
tools. The device structure and testing system are presented 
in detail. The relationship between the noise spectral 
density and device temperature is analyzed. It is 
demonstrated that not only thermal noise but also shot 
noise are strongly dependent on the device temperature. 

I. INTRODUCTION 

The blocked-impurity-band (BIB) detector consists of a 
heavily doped absorbing layer in series with a thin high-purity 
blocking layer. The Si-based BIB detectors can response a 
wide spectral range from infrared to terahertz (THz) region. 
The detection mechanism of the Si-based BIB detectors is as 
follows: (1) the radiations pass through the blocking layer and 
is absorbed by the absorbing layer; (2) the carriers in the 
impurity band are excited and transit to the conduction band; (3) 
the excited free carriers are swept along the conduction band 
and collected by electrodes. Through the above three steps, the 
THz optical signal can be transformed into electrical signal, 
and realize its detection [1]. Generally, the Si-based BIB 
detectors are operated at temperature below 12K, and possess 
excellent performances such as high sensitivity, large quantum 
efficiency, and low dark current [2]. 

The Si-based BIB detectors have been developed for the 
optimal choice for astronomical imaging, atmospheric sensing, 
and spectroscopic applications in spectral range from 5 to 40 
micron [3-5]. The first application of Si-based BIB detectors in 
space was on the Cosmic Background Explorer (COBE) 
satellite launched by NASA in 1989. There are 16 separate Si-
based BIB detector elements carried on the COBE, which were 
designed and fabricated at Rockwell International Science 
Center. Before then, the extrinsic Si photoconductive detectors 
were commonly used in satellite-based far infrared telescope 
(for instance, the Infrared Astronomical Satellite (IRAS) 
launched in 1983). In terms of response spectrum range and 
susceptibility to high energy cosmic rays, the performances of 
the BIB detectors carried on the COBE are far superior to the 
extrinsic Si-based photoconductive detectors carried on the 
IRAS. Therefore, the state-of-the-art Si-based BIB detectors 
have completely replaced extrinsic Si photoconductors. 

Noise behaviors can be used as a baseline for characterizing 
performance of Si-based BIB detectors. Up to now, most of 
researchers have focused on the dark current study of Si-based 
BIB detectors [6]. However, dark current is only one of factors 
that contribute to the device noise, and other critical noise 
components also include background noise, 1/f noise, and 
thermal noise. To fill this gap and facilitate device optimization, 
it is therefore necessary to give a full description of device 
noise by considering all the related factors. 

II. DEVICE STRUCTURE AND  TESTING SYSTEM 
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Fig. 1. Schematic of cross-section of epitaxial Si:P BIB detector. 
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Fig. 2. Schematic of testing system for measuring device noise. 

 
Epitaxial Si-based BIB detectors were fabricated for noise 

measurement. The cross-sectional structure is shown in Fig. 1, 
and is sequentially composed of Si high-conductivity substrate, 
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absorbing layer, blocking layer, contact layer, and passivation 
layer. The anode is formed upon the contact layer, and the 
cathode is formed upon the substrate. As shown in Fig. 2, the 
measured BIB detector is placed in the cryostat, and device 
temperature can be adjusted accurately by the refrigerator and 
the temperature control device. The anode bias is applied by 
SR570, and device noise is displayed by Agilent N9020A. 

III. RESULT AND DISCUSSION 

 
Fig. 3. Measured noise spectrum of the epitaxial Si:P BIB detector 
enclosed by liquid helium at anode bias of 3V. 
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Fig. 4. Dependence of noise spectral density on device 
temperature at anode bias of 3V. 

 
The noise components of Si-based BIB detectors consist of 

thermal noise, shot noise, and flicker noise. Among them, 
thermal noise can be expressed as: 

RKTI /4T =                                                        (1) 

where K is the Boltzmann constant, T is the device temperature, 
and R is the device output resistance. The shot noise has the 
following form: 

)(2 BPDS IIIqI ++=                                                (2) 

where q=1.6×10-19 C, ID is the dark current, IP is the signal 
current, and IB is the background current. The flicker noise is 
due to random effects associated with surface traps and 
generally has 1/f characteristics that are important only at 
lower frequencies, and thus is also commonly known as 1/f 

noise. Figure 1 shows the noise spectrum of Si-based BIB 
detector enclosed by liquid helium at anode bias of 3V. It is 
found that current noise has a 1/f dependence on frequency at 
low frequencies, and keeps a constant value of 0.76pA/Hz1/2 
when the frequency is above 2 KHz. Our results show that the 
actual device noise level in the liquid helium environment is 
far below 0.76pA/Hz1/2 due to the limitation from electronic 
noise of the testing system. 

Figure 4 shows the dependence of noise spectral density 
on device temperature at the anode bias of 3V. As observed, 
the relationship between the noise spectral density and the 
device temperature is an approximately S-type curve. However, 
according to Eq. (1), the thermal noise is proportional to the 
square root of device temperature. Therefore, it can be 
concluded that the thermal noise is not only component of 
device noise and the shot noise as one of contributors of device 
noise is also a strong function of device temperature. 

IV. CONCLUSION 

The noise behaviors of the epitaxial Si:P BIB detectors have 
been investigated by experimental and theoretical tools. Our 
results show that the actual device noise level in the liquid 
helium environment is far below 0.76pA/Hz1/2 due to the 
limitation from electronic noise of testing system. It is found 
that the measured relationship between the noise spectral 
density and the device temperature is an approximately S-type 
curve. Moreover, it is demonstrated that not only thermal noise 
but also shot noise are strongly dependent on the device 
temperature. 
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