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Abstract—We present methods for retrieving the effective
impedance of metamaterials from the Fresnel reflection coef-
ficients at the interface between two semi-infinite media. The
derivation involves the projection of modal expansions onto the
dominant modes of the two semi-infinite media. It is shown
that a number of effective impedance formulas, previously
obtained by field averaging techniques, can also be derived
from the scattering-based formalism, by an appropriate choice
of projection.

I. INTRODUCTION

Effective medium techniques, when applicable, can provide
deep physical insight into the properties of metamaterials and
lead to simplified analytical treatments of these heterogeneous
structures. The effective impedance of a medium can be
retrieved from the Fresnel reflection coefficient [1], [2]. For
the determination of the Fresnel reflection and transmission
coefficients at the interface (see Fig. 1) between two semi-
infinite media (1) and (2), the fields in each medium are
represented by Bloch mode expansions. An orthogonality
property can be used to transform the field matching conditions
into a system of linear equations. When the wave propagation
in each medium is dominated by a single mode, the projection
of the rigorous modal expansions onto the set of dominant
modes leads to a truncated system of two linear equations with
two unknowns, which can be solved analytically to obtain the
approximate reflection and transmission coefficients.

I R

T

�1�

�2�

x
y

z

Fig. 1. Illustration of an incidence from a semi-infinite medium (1) into a
semi-infinite medium (2).

II. THE EFFECTIVE IMPEDANCE

There exist a number of different effective impedance for-
mulas and this reflects the fact that there are many variations in
the implementation of the mode-matching techniques. If 𝑅 and
𝑇 are respectively the reflection and transmission coefficients,

the tangential field continuity at the interface between the
semi-infinite media can be written as

𝑬
(1)−
⊥ +𝑅𝑬

(1)+
⊥ ≈ 𝑇 𝑬

(2)−
⊥ , (1)

𝑯
(1)−
⊥ +𝑅𝑯

(1)+
⊥ ≈ 𝑇 𝑯

(2)−
⊥ , (2)

where (𝑬(1),𝑯(1)) and (𝑬(2),𝑯(2)) denotes respectively
the dominant Bloch modes of the media (1) and (2). The
mode-matching equations are obtained by projecting the modal
expansions Eqs. (1) and (2) onto a set of test functions
𝑬Test and 𝑯Test (e.g., adjoint modes 𝑬† and 𝑯† [1]) and
by applying the relevant the orthogonality properties. Several
choices of test functions have been proposed and validated.
For instance, the set of test functions can consist of:

1) The electric field of the adjoint mode from medium (1)
and the magnetic field of the adjoint mode from
medium (2): 𝑬Test = 𝑬(1)† and 𝑯Test = 𝑯(2)†.

2) The electric field of the adjoint mode from medium (2)
and the magnetic field of the adjoint mode from
medium (1): 𝑬Test = 𝑬(2)† and 𝑯Test = 𝑯(1)†.

3) Both the electric fields and magnetic fields of the adjoint
mode from only medium (1): 𝑬Test = 𝑬(1)† and
𝑯Test = 𝑯(1)†.

For normal incidence, these three choices lead respectively to
the following effective impedance formulas for medium (2):

𝑍
(2)
eff =

⟨𝐸(2)
𝑦 ⟩2

⟨(𝑬(2) ×𝑯(2)) ⋅ 𝒆𝑧⟩ , (see also [3]), (3)

𝑍
(2)
eff =

⟨(𝑬(2) ×𝑯(2)) ⋅ 𝒆𝑧⟩
⟨𝐻(2)

𝑥 ⟩2
, (see also [4]), (4)

𝑍
(2)
eff =

⟨𝐸(2)
𝑦 ⟩

⟨𝐻(2)
𝑥 ⟩

, (see also [5]), (5)

where the operator ⟨𝐹 ⟩ denotes the spatial average over (over
the interface of a unit cell) of a scalar field 𝐹 . The computed
effective impedance tends to be only weakly dependent on
the choice of the projection and in this work we will use the
effective impedance concept based on Eq. (3).
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III. APPLICATION TO A LOSSY METAMATERIAL

As a model of a lossy metamaterial, we consider the
example of a metamaterial structure consisting of an array
of layered metal-dielectric-metal pillars [6], as illustrated in
Fig. 2. Figure 3 shows the computed effective index 𝑛

(2)
eff

and effective impedance 𝑍
(2)
eff , for normal incidence by an

(𝐸𝑥, 𝐻𝑦)-polarized plane wave; the corresponding effective
dielectric permittivity 𝜀

(2)
𝑥,eff = 𝑛

(2)
eff /𝑍

(2)
eff and effective mag-

netic permeability 𝜇𝑦,eff = 𝜇
(2)
𝑧,eff = 𝑛

(2)
eff 𝑍

(2)
eff are plotted

in Fig. 4. Figure 4 indicates that the effective magnetic
permeability 𝜇

(2)
𝑦,eff has a negative real part for frequencies

𝜈 ∈ [0.75THz, 1.15THz]. It follows that the vacuum-
homogenized material interface can support surface modes
with TE-polarization (or magnetic surface plasmon). The pres-
ence of magnetic surface plasmons implies that a metamaterial
waveguide (see Fig. 5) can guide 𝐸𝑥-polarized waves. The
field confinement near the waveguide core does not rely on
total internal reflection; instead confinement is due to the
existence of surface modes, so a metamaterial waveguide
with a subwavelength core diameter can still confine waves.
The continuous curves and dashed curves in Fig. 6 indicate
respectively the dispersion curves of a planar metamaterial
waveguide and its homogenized material waveguide.
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Fig. 2. Illustration of a metamaterial.
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Fig. 3. The computed effective parameters 𝑛
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eff

and 𝑍
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.
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Fig. 4. The real and imaginary parts of the effective dielectric constant 𝜀(2)
𝑥,eff

and effective magnetic permeability 𝜇
(2)
𝑦,eff
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Fig. 5. Illustration of a planar waveguide with homogenized material cladding.
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Fig. 6. The continuous and dashed curves are respectively the dispersion
curves of the metamaterial waveguide and homogenized material waveguide.
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