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Abstract—A new figure of merit for single transverse mode
operation and an accurate procedure for calculating the coupling
coefficient in distributed feedback lasers with laterally-coupled
ridge waveguide surface grating structures are introduced. Based
on the difference in optical confinement between the pumped
and un-pumped regions in the transverse plane, the single
transverse mode figure of merit is effective and easy to calculate,
while the improved coupling coefficient calculation procedure
gives experimentally confirmed better results than the standard
calculation approaches.

I. INTRODUCTION

Single transverse mode (STM) operation and accurate con-
trol of emission characteristics are important for applica-
tions ranging from optical communications to atomic clocks.
Buried-grating distributed feedback (DFB) lasers have been
the conventional solution. To avoid the problematic and
costly overgrowth typical for those lasers, we have employed
laterally-coupled ridge-waveguide (LC-RWG) surface gratings
(Fig. 1), which are applicable to different materials and can
be easily integrated in complex device structures.

The evaluation of STM operation and of the coupling
coefficient in DFB lasers with LC-RWG surface gratings is
complicated by the particularities of LC-RWG interaction with
the optical field. The STM operation is determined by the
transverse modal gain discrimination and by the coupling
coefficient difference between transverse modes. Since the
higher-order transverse modes generally have a higher cou-
pling coefficient it is important to assess the range of LC-RWG
dimensions that lead to the highest modal gain advantage for
the fundamental mode. On the other hand, since high coupling
coefficient values are difficult to achieve with surface gratings,
the under-the-ridge confinement of the fundamental mode has
to be reduced in favor of the confinement in the grating area
in order to achieve a high enough coupling coefficient. The
proposed simulation approaches enable the investigation of a
large solution space in search of a good compromise.
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Fig. 1. Schematic 3D and top views of a LC-RWG grating.

II. CALCULATION PROCEDURES

A. Transverse mode discrimination

The transverse mode gain discrimination is given by the
modal gain difference between the fundamental and higher-
order modes. The magnitude of the modal gain Gm for the
mth transverse mode is determined by the correlation between
the transverse distributions of the local material gain g(x, y)
in the active area Ωact and the optical field intensity Ψ2

m(x, y)
of the mode:

Gm =

∫∫
Ψ2

m(x, y) · g(x, y) dx dy∫∫
Ψ2

m(x, y) dx dy
. (1)

The transverse optical field distributions in RWG and LC-
RWG structures can be solved, for example by using a
Mode Solver (MS) applied to the transverse refractive index
distribution. For a LC-RWG grating with rectangular lateral
corrugations (like in Fig. 1) the transverse refractive index
distribution is obtained by longitudinally-averaging the distri-
butions in the successive wide- and narrow-ridge grating slices:

navg(x, y) =
√
γ · n2wide(x, y) + (1− γ) · n2narrow(x, y) (2)

where γ is the grating filling factor (γ = Λ1/Λ from Fig. 1),
navg, nwide and nnarrow are the transverse distributions of the
longitudinally-averaged refractive index and of the refractive
index in the wide (W+2D) and narrow (W) ridge grating slices.

Since the local material gain distribution cannot be evalu-
ated without significant computational effort, we employ an
effective approximation which assumes that the local gain is
constant and positive in the pumped active region under the
ridge, constant and negative (i.e. absorption loss) in the un-
pumped active region and zero elsewhere. This approximation
assumes a step lateral distribution of the current in the active
region and non-absorbing high-bandgap material outside the
active region in all regions where the optical field intensity
is non-negligible. Such an approximation is suited for deeply
etched structures since deep etching, close to the active region,
required to achieve a high coupling coefficient in LC-RWG
structures, implies a limited lateral current diffusion. Also,
since absorbing regions outside the active region affect the
higher order modes more, the approximation is more likely to
give a false negative than a false positive STM evaluation.
Moreover, the lateral current diffusion can be taken into
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account by extending the pumped active region area laterally
beyond the region placed strictly under the ridge and contact.
With the approximation that the constant gain in the pumped
area of the active region is equal with the constant absorption
loss in the un-pumped area of the active region, the modal gain
(1) can be simplified to Gm = gΓ±

m = gΓ+
m − gΓ−

m, where Γ+
m

and Γ−
m are the ”under-the-ridge” and ”not-under-the-ridge”

optical confinement factors for the mth transverse mode in the
pumped and un-pumped active region areas, respectively.

The modal gain discrimination condition for achieving
single transverse fundamental mode operation is associated
with maximizing for all m:

Γ±
1m =

gΓ+
1 − gΓ+

m

gΓ+
1

+
gΓ−

m − gΓ−
1

gΓ−
m

. (3)

Since Γ2 is generally bigger than Γ4, Γ6, . . . and Γ3 is
generally bigger than Γ5, Γ7, . . ., the STM-operation can be
evaluated by studying the normalized product of Γ±

12 and Γ±
13.

The normalization enables the comparison between the modal
gain selectivity of different structures:

Γ±
123 =

(
Γ±
12 · Γ

±
13

)
· 1

4
. (4)

B. LC-RWG grating coupling coefficient evaluation

An accurate evaluation of the coupling coefficient κ is
essential for designing DFB lasers. The standard formula
generally used for calculating the coupling coefficient is:

κ ≈2 · (n2 − n1)

λ0
· Γg ·

sin(πmγ)

m
, (5)

where m is the grating order, n1 and n2 are the refractive
index values assumed constant in the successive low and high
refractive index areas of the grating and Γg is the optical
confinement factor in the grating region. This standard formula
is applicable only when the refractive index is transversely
constant in the grating areas of the grating slices and is valid
for conventional buried gratings, since the longitudinally al-
ternating grating materials are semiconductors with refractive
index values close to neff. However, for LC-RWG structures
the formula (5) overestimates κ, because n1 + n2 < 2 · neff,
as one of the longitudinally alternating grating materials is
a dielectric with much lower refractive index but a small
influence on the grating effective refractive index. A more
accurate formula for calculating κ in LC-RWG gratings with
rectangular lateral corrugations, applicable even for gratings
where the refractive index varies transversely in the grating
area of the slices, is [1]:

κ ≈ 2 · (neff,wide − neff,narrow)

λ0
· sin(πmγ)

m
, (6)

where neff,wide and neff,narrow are the effective refractive index
values for the wide and narrow ridge grating slices. This
formula includes the effective refractive index values of the
grating slices, which are useful in transfer matrix calculations
of the LC-RWG grating behavior.

The effective refractive index values for the wide and narrow
ridge grating slices cannot be calculated directly with a MS
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Fig. 2. Variation of (a) Γ±
123 as a function of ridge width and etching depth

and (b) κ as a function of unetched cladding thickness evaluated using (5)
( ), (6) and convolution ( ), and (6) with neff values for wide and narrow
ridge slices obtained directly from a MS ( ).

because this would imply boundary condition violations in
the longitudinal direction. A correct effective refractive index
calculation procedure is to use the convolution of the trans-
verse optical field distribution (Ψavg(x, y)) obtained for the
longitudinally-averaged transverse refractive index distribution
with the transverse refractive index distributions in the narrow
and wide ridge grating slices (with ’slice’ = narrow or wide):

n2eff,slice =

∫∫
Ψ2

avg · n2slice dx dy∫∫
Ψ2

avg dx dy
−
∫∫

(∇Ψavg)
2
dx dy

k20 ·
∫∫

Ψ2
avg dx dy

(7)

This corresponds also to the derivation of the coupling coef-
ficient formula from coupled mode theory [1]–[3] since the
second term on the right hand side of (7) is canceled in the
effective refractive index contrast of (6).

III. RESULTS AND CONCLUSIONS

The left panel of Fig. 2 gives the variation of Γ±
123 as a

function of remaining un-etched cladding thickness (t) and
central ridge width (W ) for a 780 nm DFB laser with LC-
RWG gratings having D=2.5 µm, while the right panel of
Fig. 2 gives coupling coefficient calculation results obtained
with different approaches for varying unetched cladding layer
thickness (t). Stable STM operation has been experimentally
obtained within the area with Γ±

123 > 0.6 for numerous RWG
and LC-RWG structures, while experiments confirmed the
accuracy of the grating coupling coefficient evaluation adapted
for LC-RWG gratings.

The proposed STM figure of merit is easy to evaluate and
gives a narrow parameter space for safe STM operation of
RWG and LC-RWG structures, while the proposed coupling
coefficient calculation is more accurate for LC-RWG gratings
than the conventional approaches. Together they enable better
and faster determination of the LC-RWG gratings structural
parameters.
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